K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

THANKS

28 tháng 9 2018

gọi a là chữ số khác 5 của A , ta có tổng các chữ số của A là :

    1996 . 5 + a = 9980 + a

suy ra số dư trong phép chia của A cho 9 là : 8 + a = ( mod 9 )           ( * )

Nếu A là số chính phương thì A bằng K2 , mà số dư trong phép chia của K cho 9 là : 0 ; 1 ; 2 ; 3 ; 4 nên số dư trong phép chia của A cho 9 là : 0 , 1 , 4 , 7

     Như vậy , từ ( * ) ta có các giá trị mà  a có thể nhân là : 1 , 2 , 5 ( loại )

a , A có chữ số tận cùng là an: Do A chính phương nên a không thể bằng 2 và bằng 8 mà bằng 1 , như vậy :

A = ( 10m + 5 )2 = 1002 + 20m + 1

suy ra chữ số hàng chục của A là số chẵn , khác 5 , nên trường hợp này không thể xảy ra

b , A có chữ số tận cùng khác a , tức là 5 : suy ra :

         A = ( 10m + 5 ) = 100m( m + 1 ) + 25

Từ đó , ta có a = 2 và chữ số hàng trăm của A là số chẵn ( vì m( m + 1 ) chẵn ) , tức là khác 5 , mâu thuẫn với giả thiết .

             Vậy , không thể xảy ra trường hợp A là số chính phương .

25 tháng 9 2019

Bài 1:

a) \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

b) \(2+4+6+...+2n=\frac{\left[\left(2n-2\right):2+1\right]\left(2n+2\right)}{2}=\left(n-1+1\right)\left(n+1\right)=n\left(n+1\right)\)

Các phần khác tương tự

Bài 2:( t làm theo cách hiểu )

Gọi 4 chứ số đó là a,b,c,d \(\left(a\ne b\ne c\ne d;a,b,c,d\ne0\right)\)

a) Chứng tỏ có thể lập 4 số khác nhau t chịu hiểu nhưng ko biết ghi gì

b) Từ chữ số a  hợp vs 3 chữ số còn lại ta được 6 số

Tương tự các số b,c,d  hợp vs 3 chữ số còn lại được 6 số

Như vậy ta có thể lập được \(6.4=24\)( số ) 

25 tháng 9 2019

đề sai rồi banh ơi