Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2mx+2m-3=0\)
\(\Delta^,_x=m^2-2m+3\)
\(=\left(m-1\right)^2+2\ge2>0;\forall m\)
\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)
Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)
Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)
\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)
\(\Leftrightarrow-8m+4=-4\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
ta có : \(\Delta'=\left(-4\right)^2-8\left(m^2+1\right)=16-8m^2-8=8-8m^2\)
phương trình có 2 nghiệm phân biệt khi \(8-8m^2\ge0\)
\(\Leftrightarrow m^2\le1\Leftrightarrow-1\le m\le1\)
áp dụng hệ thức vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=\dfrac{m^2+1}{8}\end{matrix}\right.\)
ta có : \(x_1^4-x_2^4=x_1^3-x_2^3\Leftrightarrow\left(x_1^2-x_2^2\right)\left(x_1^2+x_2^2\right)=\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-2x_1x_2\right)=\left(x_1-x_2\right)\left(\left(x_1+x_2\right)^2-x_1x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-2x_1x_2\right)=\left(x_1+x_2\right)^2-x_1x_2\) (vì phương trình có 2 nghiệm phân biệt \(\Rightarrow x_1-x_2\ne0\))
\(\Leftrightarrow1-2\left(\dfrac{m^2+1}{8}\right)=1-\dfrac{m^2+1}{8}\Leftrightarrow-2\left(\dfrac{m^2+1}{8}\right)=-\dfrac{m^2+1}{8}\)
\(\Leftrightarrow\dfrac{m^2+1}{8}=0\Leftrightarrow m^2+1=0\left(vôlí\right)\)
vậy không có giá trị của \(m\) thỏa mãn điều kiện bài toán .