Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Δ=2^2-4(m-3)
=4-4m+12=16-4m
Để phương trình có hai nghiệm thì 16-4m>=0
=>m<=4
m(x1^3+x2^3)+(x1*x2)^2=9
=>m[(x1+x2)^3-3x1x2(x1+x2)]+(m-3)^2=9
=>m[(-2)^3-3(m-3)*(-2)]+(m-3)^2=9
=>m[-8+6(m-3)]+(m-3)^2=9
=>m^2-6m+9-9+m[-8+6m-18]=0
=>m^2-6m+m[6m-26]=0
=>m^2-6m+6m^2-26m=0
=>7m^2-32m=0
=>m=0(nhận) hoặc m=32/7(loại)
△ = 4-4m+12 = 16-4m
ptr có 2 ngh \(x_1;x_2\) ⇔△≥0 ⇔m≤4
Theo viet: \(x_1+x_2=-2;x_1x_2=m-3\)
Ta có\(m\left(x_1^3+x_2^3\right)+x_1^2x_2^2=9\\ \Leftrightarrow m\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)+x_1^2x_2^2=9\\ \Leftrightarrow m\left(-2\right)\left(x_1+x_2\right)^2-3x_1x_2m\left(-2\right)+\left(x_1x_2\right)^2=9\\ \Leftrightarrow-8m+6m\left(m-3\right)+\left(m-3\right)^2=9\\ \Leftrightarrow6m^2-18m-8m+m^2-6m+9=9\Leftrightarrow7m^2-32m=0\\ \)
⇔m=0(tm) hoặc m=32/7 (loại)
kl....
\(\Delta=\left(2-m\right)^2-4.\left(-3\right)=\left(m-2\right)^2+12\ge0\) luôn đúng
Do đó pt luôn có hai nghiệm \(x_1,x_2\) với mọi m
Ta có : \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)
\(\Leftrightarrow\)\(x_1^2+2018-2\sqrt{\left(x_1^2+2018\right)\left(x_2^2+2018\right)}+x_2^2+2018=x_1^2+2x_1x_2+x_2^2\)
\(\Leftrightarrow\)\(2018-\sqrt{\left(x_1x_2\right)^2+2018\left(x_1+x_2\right)^2-4036x_1x_2+2018^2}=x_1x_2\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=m-2\\x_1x_2=-3\end{cases}}\)
(*) \(\Leftrightarrow\)\(2018-\sqrt{\left(-3\right)^2+2018\left(m-2\right)^2-4036.\left(-3\right)+2018^2}=-3\)
\(\Leftrightarrow\)\(9+2018\left(m-2\right)^2+12108+2018^2=2021^2\)
\(\Leftrightarrow\)\(2018\left(m-2\right)^2=0\)
\(\Leftrightarrow\)\(m=2\)
Vậy với m=2 thì hai nghiệm pt thoả mãn \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)
Ta có phương trình \(x^2-5x+m=0\)
Để PT có nghiệm thì \(\Delta=25-4m\ge0\)
\(\Rightarrow m\le\frac{25}{4}\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}}\)
do đó \(\left|x_1-x_2\right|=5\Leftrightarrow\left(x_1-x_2\right)^2=25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_2x_2=25\)
\(\Leftrightarrow4x_1x_2=0\)
\(\Rightarrow m=0\)(TM)
Vậy..........
\(\Delta^'=\left(-1\right)^2-\left(m-1\right)=2-m\)
Để PT có nghiệm thì: \(m\le2\)
Khi đó theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m-1\end{cases}}\)
Ta có: \(x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[4-3\left(m-1\right)\right]=0\)
Nếu \(x_1-x_2=0\Rightarrow x_1=x_2=1\Rightarrow m=1\left(tm\right)\)
Nếu \(4-3\left(m-1\right)=0\Rightarrow m=\frac{7}{3}\left(ktm\right)\)
Vậy m = 1
Phương trình 2 nghiệm phân biệt khi
\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)
\(\Leftrightarrow m\ne-1\)
Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)
Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)
<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)
Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán
\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)
\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)
\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)
\(\Leftrightarrow m\ge-\dfrac{8}{3}\)
Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)
Ta có: \(\Delta^'=\left(2-m\right)^2-1\cdot\left(-3\right)=\left(m-2\right)^2+3>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt
Theo hệ thức viete ta có: \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1x_2=-3\end{cases}}\)
\(\Rightarrow\left|x_1x_2^2\right|+\left|x_1^2x_2\right|=18\)
\(\Leftrightarrow\left|x_1x_2\right|\left(\left|x_1\right|+\left|x_2\right|\right)=18\)
\(\Leftrightarrow\left|x_1\right|+\left|x_2\right|=6\)
Xét dấu x tự giải ra nhé
x2-2(m+1)x+m=0
Giải
\(\Delta=b^2-4ac\)
= (-2m-2)2-4.1.m
= 4m2+8m+4-4m
= 4m2+4m+1+3
= (2m+1)2+3
Do (2m+1)2 \(\ge0\) nên (2m+1)2+3 luôn luôn lớn hơn 0 với mọi m
\(\Rightarrow\) Phương trình có hai nghiệm phân biệt.
Ta có: \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{3}{x_1x_2}\)
\(\Leftrightarrow\frac{x_1\left(2x_1-1\right)}{x_1x_2}+\frac{x_2\left(2x_2-1\right)}{x_1x_2}=\frac{\left(x_1x_2\right)^2}{x_1x_2}+\frac{3}{x_1x_2}\)
\(\Leftrightarrow2x_1^2-x_1+2x_2^2-x_2=\left(x_1x_2\right)^2+3\)
\(\Leftrightarrow2\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+3\)
Mà \(\left(x_1^2+x_2^2\right)=S^2-2P\) ; \(\left(x_1+x_2\right)=S\) ; \(\left(x_1x_2\right)^2=P^2\)
\(\Rightarrow2\left(S^2-2P\right)-S-P^2-3=0\)
\(\Leftrightarrow2S^2-4P-S-P^2-3=0\) \(\left(S=-\frac{b}{a};P=\frac{c}{a}\right)\)
\(\Leftrightarrow2\left(-\frac{-2m-2}{1}\right)^2-4\left(\frac{m}{1}\right)-\left(-\frac{-2m-2}{1}\right)-\left(\frac{m}{1}\right)^2-3=0\)
\(\Leftrightarrow2\left(2m+2\right)^2-4m-2m-2-m^2-3=0\)
\(\Leftrightarrow8m^2+16m+8-4m-2m-2-m^2-3=0\)
\(\Leftrightarrow7m^2+10m+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\)
Vậy với \(\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt thỏa mãn yêu cầu đề bài.
CHÚC BẠN HỌC TỐT!
Δ=2^2-4(m-3)
=4-4m+12=16-4m
Để phương trình có hai nghiệm phân biệt thì 16-4m>0
=>m<4
m(x1^3+x2^3)+(x1*x2)^2=9
=>m[(x1+x2)^3-3x1x2(x1+x2)]+(m-3)^2=9
=>m[(-2)^3-3(m-3)*(-2)]+(m-3)^2=9
=>m[-8+6(m-3)]+(m-3)^2=9
=>m^2-6m+9-9+m[-8+6m-18]=0
=>m^2-6m+m[6m-26]=0
=>m^2-6m+6m^2-26m=0
=>7m^2-32m=0
=>m=0(nhận) hoặc m=32/7(loại)
vậy nếu cho x1x2 là hai nghiệm thì sao ạ ( không có phân biệt)