Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vi x-y=0 => x=y
thay x=y vao he ta duoc
\(\hept{\begin{cases}\left(a+1\right)x-x=a+1&x+\left(a-1\right)x=2&\end{cases}}\)
<=>\(\hept{\begin{cases}ax=a+1\\2=ax\end{cases}}\)
<=>\(\hept{\begin{cases}2=a+1\\ax=2\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\x=y=2\end{cases}}}\)
voi a =1 thi he co nghiem duy nhat x=y=2
cai doan dau do may minh bi loi chu no la he gom 2 pt
(a+1)x-x=a+1 va x+(a-1)x=2
Phương trình 2 nghiệm phân biệt khi
\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)
\(\Leftrightarrow m\ne-1\)
Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)
Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)
<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)
Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán
\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)
\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)
\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)
\(\Leftrightarrow m\ge-\dfrac{8}{3}\)
Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)
Khi đó x12 + x22 = 0 <=> ( x1 + x2 )2 - 2x1x2 = 0
<=> 42 - 2( m + 1 ) = 0
<=> 16 - 2m - 2 = 0
<=> -2m = -14 <=> m = 7
Vậy với m = 7 thì phương trình có hai nghiệm thỏa mãn x12 + x22 = 0
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{-2m-8}{1}=4m+8\\x_1x_2=\frac{c}{a}=m^2-8\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=4m+8\Rightarrow x_1^2+x_2^2=4m+8-2x_1x_2\)
\(\Rightarrow x_1^2+x_2^2=4m+8-2\left(m^2-8\right)=4m+8-2m^2+16=4m+24-2m^2\)
hay \(A=-2m^2+4m+24-\left(x_1+x_2\right)\)
\(=-2m^2+4m+24-4m-8=-2m^2+16\le16\)
Dấu ''='' xảy ra khi m = 0
Tính delta => Tìm điều kiện của m để PT có 2 nghiệm x1, x2 là delta > 0.
Áp dụng Viets vào để tìm x1+x2 và x1.x2 theo m.
Sau đó: vì |x1-x2|=3 => (x1-x2)^2=9 <=> x12 + x22 -2x1.x2=9 <=> (x1+x2)2 - 4x1.x2=9
Sau đó thay x1+x2 và x1.x2 (theo Viets) vào để tìm được m.
Đối chiếu với đk của m là được
\(\Delta=\left(2-m\right)^2-4.\left(-3\right)=\left(m-2\right)^2+12\ge0\) luôn đúng
Do đó pt luôn có hai nghiệm \(x_1,x_2\) với mọi m
Ta có : \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)
\(\Leftrightarrow\)\(x_1^2+2018-2\sqrt{\left(x_1^2+2018\right)\left(x_2^2+2018\right)}+x_2^2+2018=x_1^2+2x_1x_2+x_2^2\)
\(\Leftrightarrow\)\(2018-\sqrt{\left(x_1x_2\right)^2+2018\left(x_1+x_2\right)^2-4036x_1x_2+2018^2}=x_1x_2\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=m-2\\x_1x_2=-3\end{cases}}\)
(*) \(\Leftrightarrow\)\(2018-\sqrt{\left(-3\right)^2+2018\left(m-2\right)^2-4036.\left(-3\right)+2018^2}=-3\)
\(\Leftrightarrow\)\(9+2018\left(m-2\right)^2+12108+2018^2=2021^2\)
\(\Leftrightarrow\)\(2018\left(m-2\right)^2=0\)
\(\Leftrightarrow\)\(m=2\)
Vậy với m=2 thì hai nghiệm pt thoả mãn \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)
Ta có phương trình \(x^2-5x+m=0\)
Để PT có nghiệm thì \(\Delta=25-4m\ge0\)
\(\Rightarrow m\le\frac{25}{4}\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}}\)
do đó \(\left|x_1-x_2\right|=5\Leftrightarrow\left(x_1-x_2\right)^2=25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_2x_2=25\)
\(\Leftrightarrow4x_1x_2=0\)
\(\Rightarrow m=0\)(TM)
Vậy..........