K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2019

\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2\ge0\Rightarrow-2\le m\le2\)

Khi đó ta có \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\frac{m^2-2}{2}\end{matrix}\right.\)

\(A=\frac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{m^2+1}{m^2+2}=1-\frac{1}{m^2+2}\)

Do \(0\le m^2\le4\Rightarrow\frac{1}{6}\le\frac{1}{m^2+2}\le\frac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}A_{min}=1-\frac{1}{2}=\frac{1}{2}\Rightarrow m=0\\A_{max}=1-\frac{1}{6}=\frac{5}{6}\Rightarrow m=\pm2\end{matrix}\right.\)

NV
31 tháng 8 2020

Bạn xem lại đề bài

\(2m^2-2mx....\) có gì đó sai sai

10 tháng 5 2017

Ta có \(\Delta\)'= \(\left(-m\right)^2-2m+2=\left(m-1\right)^2+1>0\veebar m\)

Vậy với mọi giá trị của m thì phương trình đã cho luôn có 2 nghiệm phân biệt

Theo hệ thức Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=2m-2\end{matrix}\right.\)

Thay giá trị của \(x_1+x_2\)\(x_1.x_2\) vào biểu thức A ta được :

\(A=\dfrac{6.\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)}=\dfrac{12m}{4m^2+4m+4}\)

\(A=\dfrac{3m}{m^2+m+1}\)

Cm: \(3m\le m^2+m+1\)

\(\Leftrightarrow\left(m-1\right)^2\ge0\) (luôn đúng ) (dấu = xảy ra khi x=1)

Do đó \(3m\le m^2+m+1\) khi đó ta được:

\(A=\dfrac{3m}{m+m+1}\le1\)

Vậy với GTLN của A = 1 khi và chỉ khi m=1

10 tháng 5 2017

mình gõ nhầm dấu = xảy ra khi m=1 chứ không phải x=1

8 tháng 5 2020

Áp dụng Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}\Rightarrow A=\frac{2m+1}{m^2+2}\left(1\right)}\)Tìm đk để pt (1) có nghiệm theo ẩn

\(\Rightarrow\frac{-1}{2}\le P\)

Dấu "=" xảy ra <=> m=-2

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
2 tháng 5 2017

b/ Theo vi - et thì:

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

Ta có:

\(A=\frac{1}{x^2_1x_2+\left(m-1\right)x_2+1}-\frac{4}{x_1x^2_2+\left(m-1\right)x_1+1}\)

\(=\frac{1}{\left(m-1\right)x_1+\left(m-1\right)x_2+1}-\frac{4}{\left(m-1\right)x_2+\left(m-1\right)x_1+1}\)

\(=\frac{1}{m\left(m-1\right)+1}-\frac{4}{m\left(m-1\right)+1}\)

\(=-\frac{3}{m^2-m+1}=-\frac{3}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(\ge-\frac{3}{\frac{3}{4}}=-4\)

Vậy GTNN là A = - 4 đạt được khi \(m=\frac{1}{2}\) 

2 tháng 5 2017

Em không hiểu dòng 2 của biểu thức ý..