Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4x-6=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)
=>Phương trình này có hai nghiệm phân biệt
Theo vi-et, ta có:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4^2-2\cdot\left(-6\right)=16+12=28\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)
\(C=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)
\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)
\(D=\left|x_1-x_2\right|\)
\(=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)
Xét pt (1) có:
\(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)
= \(4m^2-4m+8\)
= \(\left(2m-1\right)^2+7>0\)
\(\Rightarrow\) Pt (1) luôn có 2 nghiệm phân biệt với mọi m
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)
Theo đề bài ta có:
\(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\)
\(\Leftrightarrow2-x_2+2x_1-x_1x_2+2-x_1+2x_2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2+2\) \(\Leftrightarrow-\left(x_1+x_2\right)+2\left(x_1+x_2\right)+2-\left(x_1+x_2\right)^2=0\)
\(\Leftrightarrow-\left(x_1+x_2\right)\left[1-2+\left(x_1+x_2\right)\right]+2=0\)
\(\Leftrightarrow-2m\left(2m-1\right)+2=0\)
\(\Leftrightarrow-4m^2+2m+2=0\)
\(\Leftrightarrow\left(m-1\right)\left(2m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-1=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy để pt (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\) thì \(m=1\) hoặc \(m=\dfrac{-1}{2}\)
\(\Delta\)' = m2 - m + 2 = m2 - 2.m.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) + 2 = \(\left(m-\dfrac{1}{2}\right)^2\) + \(\dfrac{7}{4}\) \(\ge\) \(\dfrac{7}{4}\) > 0
\(\Rightarrow\) phương trình luôn có 2 nghiệm \(\forall\)m
áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)
(1 + x1)(2 - x2) + (1 + x2)(2 - x1) = x12 + x22 + 2
2 - x2 + 2x1 - x1x2 + 2 - x1 + 2x2 - x1x2 = (x1 + x2)2 - 2x1x2 + 2
= (x1 + x2)2 - (x1 + x2) - 2 = 0
thay vào ta có : (2m)2 - 2m - 2 = 0
4m2 - 2m - 2 = 0 ta có : a + b + c = 4 - 2 - 2 = 0
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
m1 = 1 ; m2 = \(\dfrac{c}{a}\) = \(-\dfrac{1}{2}\)
vậy m = 1 ; m = \(-\dfrac{1}{2}\) thảo mảng điều kiện bài toán
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
\(\Delta=4m^2-4m+1-4m-4=4m^2-8m-3\ge0\)
Để biểu thức A xác định thì \(x_1+x_2=2m-1\ne0\Rightarrow m\ne\frac{1}{2}\)
\(A=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1+x_2\right)^2}=\frac{\left(2m-1\right)^2-2\left(m+1\right)}{\left(2m-1\right)^2}\)
\(A=\frac{4m^2-6m-1}{4m^2-4m+1}\Rightarrow4Am^2-4Am+A=4m^2-6m-1\)
\(\Leftrightarrow\left(4A-4\right)m^2-2\left(2A-3\right)m+A+1=0\)
\(\Delta'=\left(2A-3\right)^2-\left(A+1\right)\left(4A-4\right)\ge0\)
\(\Leftrightarrow-12A+13\ge0\Rightarrow A\le\frac{13}{12}\)
\(\Rightarrow A_{max}=\frac{13}{12}\) khi \(m=-\frac{5}{2}\)
Thay \(m=-\frac{5}{2}\) vào điều kiện \(\Delta\) để thử thấy phù hợp, vậy...
Ta có \(\Delta\)'= \(\left(-m\right)^2-2m+2=\left(m-1\right)^2+1>0\veebar m\)
Vậy với mọi giá trị của m thì phương trình đã cho luôn có 2 nghiệm phân biệt
Theo hệ thức Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=2m-2\end{matrix}\right.\)
Thay giá trị của \(x_1+x_2\) và \(x_1.x_2\) vào biểu thức A ta được :
\(A=\dfrac{6.\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)}=\dfrac{12m}{4m^2+4m+4}\)
\(A=\dfrac{3m}{m^2+m+1}\)
Cm: \(3m\le m^2+m+1\)
\(\Leftrightarrow\left(m-1\right)^2\ge0\) (luôn đúng ) (dấu = xảy ra khi x=1)
Do đó \(3m\le m^2+m+1\) khi đó ta được:
\(A=\dfrac{3m}{m+m+1}\le1\)
Vậy với GTLN của A = 1 khi và chỉ khi m=1
mình gõ nhầm dấu = xảy ra khi m=1 chứ không phải x=1