K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

5 tháng 7 2019

Xét phương trình trên có:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)

Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:

\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)

Với m<0. Áp dụng định lí Vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)

=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)

Ta có:

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))

<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)

<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)

<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)

<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)

<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)

Đặt t=\(\frac{m^2+4}{m}< 0\)

Ta có phương trình ẩn t:

\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)

Với t=-4 ta có:

\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)

vậy m=-2

15 tháng 3 2017

a = 1 , b = - ( 2m + 1 ) , c = m - 3

\(\Delta=b^2-4ac\)

     \(=\left[-\left(2m+1\right)\right]^2-4.1.\left(m-3\right)\)

      \(=4m^2+4m+1-4m+12\)

        \(=4m^2+13>0\forall m\)

Vậy: Pt (1) luôn có 2 nghiệm phân biệt với mọi m

Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=m-3\)

   \(A=3x_1x_2-2x_1x_2\ge4\)

 \(A=3P-2P\ge4\)

 \(A=P=m-3\ge4\Leftrightarrow m\ge7\)

DD
31 tháng 5 2021

Để phương trình có hai nghiệm thì \(\Delta'>0\).

\(\Delta'=\left(m-2\right)^2+\left(m-1\right)=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\)

Do đó phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\).

Theo Viet: 

\(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+1\end{cases}}\)

\(x_1^2-2x_1x_2+x_2^2+4x_1^2x_2^2=\left(x_1+x_2\right)^2-4x_1x_2+4x_1^2x_2^2\)

\(=4\left(m-2\right)^2+4\left(m-1\right)+4\left(m-1\right)^2=4\left(2m^2-5m+4\right)=4\)

\(\Leftrightarrow2m^2-5m+4=1\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=1\end{cases}}\)