Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chưa đủ bạn ơi còn nhiều số nữa hãy gắng suy nghĩ giúp mình đi
Hai số nguyên tố cùng nhau là 2 số liền nhau và có UCLN và BCNN =1
Mà 2 số nguyên tố cùng nhau chỉ có một đó là 2;3
=>p=2+3
p=5
Mà 5 cũng là số nguyên tố
Vậy khi a và b là 2 số nguyên tố cùng nhau thì a+b sẽ ra được một số nguyên tố
Học tốt
số nguyên tố đó là số 7. Vì:
7+6=13 là số nguyên tố
7+12=19 là số nguyên tố
7+18=25 là số nguyên tố
7+24=31 là số nguyên tố
TK mk nếu thấy đúng mn nha
Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.
Ta có: 10p + 1 - p = 9p + 1
Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k
17p + 1 = 8p + 9p + 1 = 8p + 2k = 2.(4p + k) ⋮ 2
⇒ 17p + 1 là hợp số (đpcm)
Câu 1:
Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.
Nếu $p=3k+2$ thì:
$10p+1=10(3k+2)+1=30k+21\vdots 3$
Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)
$\Rightarrow p$ có dạng $3k+1$.
Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
(đpcm)
a)ta có p có 6 dạng:6k;6k+1;6k+2;........;6k+5
p=6k=>p là hợp số=>p khác 6k
p=6k+1 thì p là số ng t =>p=6k+1
p=6k+2 thì p chia hết cho 2=>p khác 6k+2
p=6k+3 thì p chia hết cho 3=>p khác 6k+3
p=6k+4 thì p chia hết cho 2=>p khác 6k+4
p=6k+3 thì p là số ng t=>p=6k+5
vậy:p=6k+1 và 6k+5
Với p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3
\(\Rightarrow\)p có dạng 3k+1 và 3k+2
+) Với p=3k+1
Khi đó: 2p+7 = 2(3k+1)+7 = 6k+2+7 = 6k+9
Mà 6k+9 > 3 nên 6k+9 chia hết cho 3 hay 2p+7 là hợp số ( không thỏa mãn yêu cầu đề bài )
+) Với p=3k+2
Khi đó: 2p+7 = 2(3k+2)+7 = 6k+4+7 = 6k+11 - Là số nguyên tố ( thỏa mãn )
4p+7 = 4(3k+2)+7 = 12k+8+7 = 12k+15
Mà 12k+15 > 3 nên 12k+15 chia hết cho 3 hay 4p+7 là hợp số ( thỏa mãn )
Vậy ...
_HT_
p nguyên tố > 3
=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguyên tố nên từ (*)
=> 5p+1 chia hết cho 3
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
P>3 suy ra P có dạng 3k+1 hoặc 3k+2
nếu P=3k+1 thì P+14=3k+1+14=3k+15 là hợp số (trái đề bài)
nếu P=3k+2 thì P+14=3K+2+14=3K+16 có thể là số nguyên tố(chọn)
P+7=3k+2+7=3k+9 là hợp số(đpcm)