K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

P>3 suy ra P có dạng 3k+1 hoặc 3k+2

nếu P=3k+1 thì P+14=3k+1+14=3k+15 là hợp số (trái đề bài)

nếu P=3k+2 thì P+14=3K+2+14=3K+16 có thể là số nguyên tố(chọn)

             P+7=3k+2+7=3k+9 là hợp số(đpcm)

8 tháng 1 2016

chưa đủ bạn ơi còn nhiều số nữa hãy gắng suy nghĩ giúp mình đi

8 tháng 1 2016

số 3;5;9 nha bạn

 

28 tháng 10 2017

ý bn là chia hết cho 31 hả ?

28 tháng 10 2017

đây là câu chia hết cho 31 nhé , em ghi nhầm

18 tháng 10 2020

https://olm.vn/hoi-dap/detail/227275074177.html

18 tháng 10 2020

Hai số nguyên tố cùng nhau là 2 số liền nhau và có UCLN và BCNN =1

Mà 2 số nguyên tố cùng nhau chỉ có một đó là 2;3

=>p=2+3

p=5

Mà 5 cũng là số nguyên tố

Vậy khi a và b là 2 số nguyên tố cùng nhau thì a+b sẽ ra được một số nguyên tố

Học tốt

4 tháng 11 2017

số nguyên tố đó là số 7. Vì:

7+6=13 là số nguyên tố

7+12=19 là số nguyên tố

7+18=25 là số nguyên tố

7+24=31 là số nguyên tố

TK mk nếu thấy đúng mn nha

4 tháng 11 2017

Bạn kia làm đúng roi nha ban

k tui nha

thanks

28 tháng 12 2023

Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.

Ta có: 10p + 1 - p  = 9p + 1 

      Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k

          17p + 1 = 8p + 9p + 1   = 8p + 2k = 2.(4p + k) ⋮ 2

        ⇒ 17p + 1 là hợp số (đpcm)

      

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Câu 1: 

Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.

Nếu $p=3k+2$ thì:

$10p+1=10(3k+2)+1=30k+21\vdots 3$

Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)

$\Rightarrow p$ có dạng $3k+1$.

Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
 (đpcm)

28 tháng 12 2021

Ho

28 tháng 12 2021

???

31 tháng 10 2018

a)ta có p có 6 dạng:6k;6k+1;6k+2;........;6k+5

p=6k=>p là hợp số=>p khác 6k

p=6k+1 thì p là số ng t =>p=6k+1

p=6k+2 thì p chia hết cho 2=>p khác 6k+2

p=6k+3 thì p chia hết cho 3=>p khác 6k+3

p=6k+4 thì p chia hết cho 2=>p khác 6k+4

p=6k+3 thì p là số ng t=>p=6k+5

vậy:p=6k+1 và 6k+5

31 tháng 10 2018

ê Thiên Triệu bn trong danh sách bn của mk đó

Với p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3

 \(\Rightarrow\)p có dạng 3k+1 và 3k+2

+) Với p=3k+1

Khi đó: 2p+7 = 2(3k+1)+7 = 6k+2+7 = 6k+9

Mà 6k+9 > 3 nên 6k+9 chia hết cho 3 hay 2p+7 là hợp số ( không thỏa mãn yêu cầu đề bài )

+) Với p=3k+2

Khi đó: 2p+7 = 2(3k+2)+7 = 6k+4+7 = 6k+11 - Là số nguyên tố ( thỏa mãn )

             4p+7 = 4(3k+2)+7 = 12k+8+7 = 12k+15

Mà 12k+15 > 3 nên 12k+15 chia hết cho 3 hay 4p+7 là hợp số ( thỏa mãn )

Vậy ...

_HT_

3 tháng 2 2022

em chịu

22 tháng 3 2016

p nguyên tố > 3

=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguyên tố nên từ (*)

=> 5p+1 chia hết cho 3 
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6