Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N=99......94 x 100...0 +9
(11 số 0)
=(99.....97-3)(99.......97+3)+9
=\(\left(99.....97\right)^2-9+9\)
=\(\left(99....97\right)^2\)
\(\Rightarrow\sqrt{N}=\sqrt{\left(99...97\right)^2}=99...97\)
a)\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Rightarrow x=3\) pt trong ngoặc vô nghiệm
b)\(pt\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x^2-4\right)=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(\frac{1}{\sqrt{x^2-4}}-1\right)=0\)
\(\Rightarrow x=\pm2;\frac{1}{\sqrt{x^2-4}}-1=0\)
\(\Rightarrow x^2=5\Rightarrow x=\pm\sqrt{5}\)
Vậy no pt là x=±2;x=± căn 5
a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)
Đặt \(x-3=t\) pt thành
\(\sqrt{t\left(t-6\right)}-t=0\)
\(\Leftrightarrow t^2-6t=t^2\)
\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)
b)\(\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
Đặt \(\sqrt{x^2-4}=t\) pt thành
\(t=t^2\Rightarrow t\left(1-t\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).
Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\)
Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)
a, Ta có: \(\Delta'=1-m+3=4-m\)
Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow4-m>0\Leftrightarrow m< 4\)
b, ĐXXĐ: \(x\le\frac{9}{4}\)
\(pt\Leftrightarrow\sqrt{\left(9-4x\right)\left(x-3\right)^2}=\left|-2x+5\right|\sqrt{9-4x}\)
\(\Leftrightarrow\sqrt{9-4x}\left(\left|x-3\right|-\left|-2x+5\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\\left|x-3\right|=\left|-2x+5\right|\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\x-3=-2x+5\\x-3=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{4}\\x=\frac{8}{3}\left(l\right)\\x=2\end{matrix}\right.\)
Vậy pt đã cho có 2 nghiệm \(x=2;x=\frac{9}{4}\)
\(b,\sqrt{x^2-4}-x^2+4=0\Leftrightarrow\sqrt{x^2-4}-\left(x^2-4\right)=0\Leftrightarrow\sqrt{x^2-4}=x^2-4.Dat:x^2-4=a\Rightarrow\sqrt{a}=a\Leftrightarrow a-\sqrt{a}=0\Leftrightarrow\sqrt{a}\left(\sqrt{a}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=0\\\sqrt{a}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\) \(+,a=0\Rightarrow x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
\(+,a=1\Leftrightarrow x^2-4=1\Leftrightarrow x^2=5\Leftrightarrow x=\pm\sqrt{5}\)
\(c,\sqrt{2x-1}=x-3\Leftrightarrow2x-1=x^2-6x+9\Leftrightarrow x^2-8x+10=0\Leftrightarrow x^2-8x+16=6\Leftrightarrow\left(x-4\right)^2=6\Leftrightarrow x=\pm\sqrt{6}+4\)
b)\(\sqrt{x^2-4}-x^2+4\) =0
<=>\(\sqrt{x^2-4}\left(1-\sqrt{x^2-4}\right)\) =0
<=>\(\sqrt{x-2}.\sqrt{x+2}\left(1-\sqrt{x-2}.\sqrt{x+2}\right)=0\)
<=>\(\left\{{}\begin{matrix}\sqrt{x-2=0}\\\sqrt{x+2=0}\\1-\sqrt{x-2}.\sqrt{x+2}=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
c)\(\sqrt{2x-1}=x-3\)
<=>\(2x-1=\left(x-3\right)^2\)
<=>\(2x-1-x+6x-9=0\)
<=>7x=10
<=>x=\(\frac{10}{7}\)
\(\left(x-1\right)\left(x-3\right)+2\sqrt{x^2-4x+9}-9=0\\ \Leftrightarrow x^2-4x-6+2\sqrt{x^2-4x+9}=0\\ \Leftrightarrow t^2-15+2t=0\left(t=\sqrt{x^2-4x+9}\right)\\ \Leftrightarrow\left[{}\begin{matrix}t=3\\t=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\sqrt{N}=33...33200...03\)