K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 4 2020

Câu 1:

Do \(\Delta\) song song d nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(2x-y+c=0\) (\(c\ne2015\))

Tọa độ giao điểm của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{c}{2};0\right)\)

Tọa độ giao điểm \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow N\left(0;c\right)\)

\(\overrightarrow{MN}=\left(\frac{c}{2};c\right)\Rightarrow\frac{c^2}{4}+c^2=45\Leftrightarrow c^2=36\Rightarrow\left[{}\begin{matrix}c=6\\c=-6\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}2x-y+6=0\\2x-y-6=0\end{matrix}\right.\)

Bài 2:

Bạn tham khảo ở đây:

Câu hỏi của tôn hiểu phương - Toán lớp 10 | Học trực tuyến

NV
2 tháng 12 2021

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-3;-1\right)\\\overrightarrow{DC}=\left(5-x;1-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}5-x=-3\\1-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=2\end{matrix}\right.\)

\(\Rightarrow D\left(8;2\right)\)

2 tháng 12 2021

Em cảm ơn ạ

6 tháng 12 2021

Em cảm ơn ạ

NV
15 tháng 3 2022

Pt có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow2\left(m+3\right)< 0\)

\(\Rightarrow m< -3\)

NV
14 tháng 10 2019

Để (d) cắt 2 trục tọa độ tại 2 điểm phân biệt thì \(\left\{{}\begin{matrix}m-1\ne0\\-2m+4\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)

Khi đó, pt hoành độ giao điểm M của (d) và Ox:

\(\left(m-1\right)x-2m+4=0\Rightarrow x=\frac{2m-4}{m-1}\Rightarrow OM=\left|\frac{2m-4}{m-1}\right|\)

Pt tung độ giao điểm N với Oy:

\(y=\left(m-1\right).0-2m+4\Rightarrow y=-\left(2m-4\right)\Rightarrow ON=\left|2m-4\right|\)

Để OMN cân thì \(OM=ON\)

\(\Rightarrow\left|\frac{2m-4}{m-1}\right|=\left|2m-4\right|\Rightarrow\left|m-1\right|=1\)

\(\Rightarrow\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)

a: vecto AC=(4;-3)

=>VTPT là (3;4)

PT AC là:

3(x-5)+4(y-0)=0

=>3x+4y-15=0

b: vecto AB=(-2;-2)=(1;1)

=>VTPT là (-1;1)

Phương trình AB là:

-1(x-1)+1(y-3)=0

=>-x+1+y-3=0

=>-x+y-2=0

=>x-y+2=0

=>M(x;x+2)

MC=5

=>MC^2=25

=>(5-x)^2+(0-x-2)^2=25

=>(x-5)^2+(x+2)^2=25

=>x^2-10x+25+x^2+4x+4=25

=>2x^2-6x+29-25=0

=>2x^2-6x+4=0

=>x=2 hoặc x=1

=>M(2;4) hoặc M(1;3)

NV
1 tháng 4 2019

Câu 1:

(C): \(\left(x-1\right)^2+\left(y-1\right)^2=1\Rightarrow\) (C) có tâm \(I\left(1;1\right)\) bán kính \(R=1\)

\(\Rightarrow\) đường tròn tâm M có bán kính \(r=1\Rightarrow IM=r+R=2\)

Do \(M\in d\Rightarrow M\left(a;a+3\right)\)

\(\overrightarrow{IM}=\left(a-1;a+2\right)\Rightarrow IM=\sqrt{\left(a-1\right)^2+\left(a+2\right)^2}=2\)

\(\Leftrightarrow2a^2+2a+1=0\) \(\Rightarrow\) pt vô nghiệm

Vậy không tồn tại M thỏa mãn

NV
1 tháng 4 2019

Câu 2:

Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính R=1 \(\Rightarrow\overrightarrow{OI}=\left(2;2\right)\)

Gọi giao điểm của OI và AB là H \(\Rightarrow H\) là trung điểm AB và \(IO\perp AB\)

Trong tam giác vuông \(OAH\) có:

\(OH=\sqrt{OA^2-AH^2}=\sqrt{R^2-\frac{AB^2}{4}}=\frac{\sqrt{2}}{2}\)

Do \(IO\perp AB\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(1;1\right)\) là 1 vtpt

\(\Rightarrow\) phương trình AB có dạng: \(x+y+c=0\)

\(d\left(O;AB\right)=OH\Rightarrow\frac{\left|0.1+0.1+c\right|}{\sqrt{1^2+1^2}}=\frac{\sqrt{2}}{2}\) \(\Rightarrow\left|c\right|=1\Rightarrow c=\pm1\)

Vậy có 2 pt đường thẳng AB thỏa mãn yêu cầu: \(\left[{}\begin{matrix}x+y+1=0\\x+y-1=0\end{matrix}\right.\)