Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy M>0.
Ta cần chứng minh M<1.Thật vậy!
\(M=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{45^2}\)
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{44\cdot45}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{44}-\frac{1}{45}\)
\(=\frac{1}{1}-\frac{1}{45}\)
\(< 1\)
\(\Rightarrow0< M< 1\)
\(\Rightarrowđpcm\)
Biết n thuộc số tự nhiên khác 0. Chứng minh: 1/12+1/22 + 1/32+.......+1/n2 không phải là số tự nhiên
\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}>0\)
\(\frac{1}{1^1}+\frac{1}{2^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}<1\)
vậy \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}\)không phải số tự nhiên
Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015
=> 3S = 3 + 32 + 33 + ...... + 32016
=> 3S - S = 32016 - 1
=> 2S = 32016 - 1
=> 2S + 1 = 32016
Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)
1)Ta có: M=1+2+22+…+2206
=>M=1+(2+22+…+2206)
=>M=1+2.(1+2+…+2205)
Vì 2.(1+2+…+2205) chia hết cho 2
=>1+2.(1+2+…+2205) không chia hết cho 2
=>M không chia hết cho 2
đặt B=1/1.2+1/2.3+...+1/2011.2012
ta có:A=1/22+1/32+1/42+.........+1/20112+1/20122<B=1/1.2+1/2.3+...+1/2011.2012
ta có:B=1/1.2+1/2.3+...+1/2011.2012
=1-1/2+1/2-1/3+...+1/2011-1/2012
=1-1/2012<1
=>A<B<1
=>A<1=>A ko fai số tự nhiên (vì số tự nhiên >1)
Mọi người giúp đỡ ik mk cũng đg rất cần, rất rất rất rất rất gấp lun
a/M=2/3.5+2/5.7+2/7.9+.....+2/97.99
M=1/3-1/5+1/5-1/7+..+1/97-1/99
M=1/3-1/99
M=32/99
b)ta có 1/2.3+1/3.4+1/4.5+..+1/2015.2016+1/2016.2017<A
=>1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016+1/2016-1/2017<a
1/2-1/2017<A
2/15/4034<A (1)
Ta có
1/1.2+1/2.3+1/3.4+1/4.5+..+1/2015.2016>A
=>1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016>A
1-1/2016
2015/2016>A (2)
Từ (1) và (2)=>A không phải là số tự nhiên(đpcm)
M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)
M = \(\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2023.2023}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
\(\dfrac{1}{4.4}\) < \(\dfrac{1}{3.4}\)
..................
\(\dfrac{1}{2023.2023}\) < \(\dfrac{1}{2022.2023}\)
Cộng vế với vế ta có:
M < 1 + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)
M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
M < 2 - \(\dfrac{1}{2023}\) < 2 (2)
Kết hợp (1) và (2) ta có:
1 < M < 2
Vậy M không phải là số tự nhiên.
M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)
M = \(\dfrac{1}{1.1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{2023.2023}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
Cộng vế với vế ta có:
M < 1 + \(\dfrac{1}{1.2}\) +\(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)
M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
M < 2 - \(\dfrac{1}{2023}\) < 2 (2)
Kết hợp (1) và (2) ta có: 1 < M < 2
Vậy M không phải là số tự nhiên.