K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 2 2020
Trần Thanh Phương@Nguyễn Việt LâmMysterious Person@Akai Haruma
NV
Nguyễn Việt Lâm
Giáo viên
16 tháng 9 2019
Đặt \(\sqrt{2}+1=a\Rightarrow\sqrt{2}-1=\frac{1}{a}\)
\(\Rightarrow S_k=a^k+\frac{1}{a^k}\) ; \(S_{k+1}=a^{k+1}+\frac{1}{a^{k+1}}\) ;
\(S_1=a+\frac{1}{a}=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)
\(\Rightarrow S_k.S_{k+1}=\left(a^k+\frac{1}{a^k}\right)\left(a^{k+1}+\frac{1}{a^{k+1}}\right)\)
\(=a^k.a^{k+1}+\frac{a^k}{a^{k+1}}+\frac{a^{k+1}}{a^k}+\frac{1}{a^k.a^{k+1}}\)
\(=a^{2k+1}+\frac{1}{a^{2k+1}}+a+\frac{1}{a}\)
\(=S_{2k+1}+S_1=S_{2k+1}+2\sqrt{2}\)
\(\Rightarrow S_k.S_{k+1}-S_{2k+1}=2\sqrt{2}\)
Thay \(k=2009\) vào ta được:
\(S_{2009}.S_{2010}-S_{4019}=2\sqrt{2}\) (đpcm)