Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(S_{ABC}=\dfrac{1}{2}.a.h_a=\dfrac{1}{2}.b.h_b=\dfrac{1}{2}.c.h_c\)
\(\Rightarrow a.h_a=b.h_b=c.h_c=2S_{ABC}=2\)
Áp dụng bất đẳng thức bunhiacopski ta có :
\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(a.h_a+b.h_b+c.h_c\right)^2=36\)
Dấu "=" xảy ra khi tam giác ABC đều
Ta có:
\(1-a_1\ge a_2+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_2a_3...a_n}\)
\(1-a_2\ge a_1+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_1a_3...a_n}\)
....
\(1-a_n\ge a_1+a_2+...+a_{n-1}\ge\left(n-1\right)\sqrt[n-1]{a_1a_2...a_{n-1}}\)
Nhân vế với vế:
\(\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)\ge\left(n-1\right)^n.a_1a_2...a_n\)
\(\Leftrightarrow\frac{a_1a_2...a_n}{\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)}\le\frac{1}{\left(n-1\right)^n}\)
Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{n}\)
Bạn vào câu hỏi tương tự ý , có 1 bạn tên giống hệt bạn từng trả lời rồi đấy !
bài này hình như có trong đề olympic Toán Trung Quốc 2003 nè
Sử dụng Cauchy-Schwarz ta có:
\(\left(ay_1+by_2+cy_3+dy_4\right)^2\le\left(ab+cd\right)\left[\frac{\left(ay_1+by_2\right)^2}{ab}+\frac{\left(cy_3+dy_4\right)^2}{cd}\right]\)\(=\frac{\left(ay_1+by_2\right)^2}{ab}+\frac{\left(cy_3+dy_4\right)^2}{cd}\)
\(=\frac{a}{b}y_1^2+\frac{b}{a}y_2^2+\frac{c}{d}y_3^2+\frac{d}{c}y_4^2+2y_1y_2+2y_3y_4\)
\(\left(ax_4+bx_3+cx_2+dx_1\right)^2 \le\left(ab+cd\right)\left[\frac{\left(ax_4+bx_3\right)^2}{ab}+\frac{\left(cx_2+dx_1\right)^2}{cd}\right]\)\(=\frac{\left(ax_4+bx_3\right)^2}{ab}+\frac{\left(cx_2+dx_1\right)^2}{cd}\)
\(=\frac{a}{b}x_4^2+\frac{b}{a}x_3^2+\frac{c}{d}x_2^2+\frac{d}{c}x_1^2+2x_1x_2+2x_3x_4\)
Đặt: \(P=\left(ay_1+by_2+cy_3+dy_4\right)^2+\left(ax_4+bx_3+cx_2+dx_1\right)^2-2\left(\frac{a^2+b^2}{ab}+\frac{c^2+d^2}{cd}\right)\)
Từ các BĐT trên ta có:
\(P\le\frac{a}{b}y_1^2+\frac{b}{a}y_2^2+\frac{c}{d}y_3^2+\frac{d}{c}y_4^2+2y_1y_2+2y_3y_4+\frac{a}{b}x_4^2+\frac{b}{a}x_3^2+\frac{c}{d}x_2^2+\frac{d}{c}x_1^2+2x_1x_2+2x_3x_4-2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{c}\right)\)
\(=-\left(\frac{a}{b}x_1^2+\frac{b}{a}x_2^2\right)-\left(\frac{c}{d}x_3^2+\frac{d}{c}x_4^2\right)-\left(\frac{a}{b}y_4^2+\frac{b}{a}y_3^2\right)-\left(\frac{c}{d}y_2^2+\frac{d}{c}y_1^2\right)+2x_1x_2+2x_3x_4+2y_1y_2+2y_3y_4\)
\(\le-2x_1x_2-2x_3x_4-2y_4y_3-2y_2y_1+2x_1x_2+2x_3x_4+2y_1y_2+2y_3y_4=0\)
=> đpcm
Áp dụng bất đẳng thức Cô - si với n số dương ta được
\(a_1+a_2+...+a_n\ge n\sqrt[n]{a_1.a_2....a_n}\)
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\ge n\sqrt[n]{\frac{1}{a_1}.\frac{1}{a_2}....\frac{1}{a_n}}\)
Suy ra \(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2.\sqrt[n]{1}=n^2\)
(dấu "=" xẩy ra <=> a1=a2 =...=an)
Theo bat dang thuc cauchy ta co
a1+a2+...+an lon hon hoc bang n.can bac n cua (a1.a2....an) (1)
1/a1+1/a2...1/an lon hon hoac bang n.1/can bac n cua (a1.a2...an) (2)
Nhan 2 ve (1) va (2) ta duoc
(a1+a2+...+an).(1/a1+1/a2+...1/an) lon hon hoac bang n tren 2
=>1/a1+1/a2+...1/an lon hon hoac bang n tren 2/a1+a2+...+an
Dau bang xay ra khi a1=a2=...=an
Mk giai co hieu ko