K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

a b c d k n m

xét tam giác AMB đồng dạng với KMD ( góc góc ) cái này dễ bạn tự chứng minh được

suy ra  \(\frac{MB}{MD}=\frac{AM}{KM}\) ( TÍCH CHẤT TAM GIÁC ĐỒNG DẠNG)

xét tam giác BMN  động dạng với DMA  ( góc góc )

suy ra  \(\frac{BM}{DM}=\frac{NM}{MA}\) ĐIỀU CẦN PHẢI CHỨNG MINH

b)  bạn xem lại câu 1 câu 2 rồi suy ra 

từ 1 và 2 ta có

\(\frac{AM}{MK}=\frac{MN}{MA}=AM^2=MN.MK\) nhân chéo nó lên

22 tháng 1 2018

mik làm được thì bạn làm ny mình nhé

16 tháng 3 2020

Mk cx ko bt àm ạn ạ

19 tháng 7 2017

lưu ý :  do DM/DN    + DM/DK =1  nên DM<DN , DM <DK

b) theo câu a to có: DM^2 =MN.MK=>DM/MN=MK/DM => DM/(DM+MN) =MK/(MK+DM) => DM/DN =MK/DK =>DM/DN + DM/DK =MK/DK + DM/DK =>DM/DN + DM/Dk =(MK+DM)/DK=DK/DK = 1 (đpcm) A B C D M N K a) do AB//CD (tgABCD là hbh)nên tg AMN đ.dạng vs tgCMD =>MN/DM =AM/CM (1) mặt khác: AD//BC( tgABCD là hbh)=>tg AMD đ.dạng vs tgCMK (T.Lét) (T.Lét) =>DM/MK =AM/CM (2) từ (1) và (2) =>MN/DM=DM/MK=>DM^2 =MN.MK

16 tháng 3 2020

a) Ta có AB // CD (ABCD hbh) -> AMN đồng dạng CMD (talet)

-> \(\frac{MN}{DM}=\frac{AM}{CM}\)(1)

Lại có AD // BC (ABCD hbh) -> AMD đồng dạng CKM (talet)

-> \(\frac{DM}{MK}=\frac{AM}{CM}\)(2)

(1) (2) -> \(\frac{MN}{DM}=\frac{DM}{MK}=DM^2=MK.MN\)

b) Ta có \(\frac{DM}{MK}=\frac{MK}{DM}\left(cma\right)\)

\(\Rightarrow\frac{DM}{DM+MN}=\frac{MK}{MK+DM}\)

\(\Rightarrow\frac{DM}{DN}=\frac{MK}{DK}\)

\(\Rightarrow\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK}{DK}+\frac{DM}{DK}\)

\(\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK+DM}{DK}=\frac{DK}{DK}=1\left(đpcm\right)\)