Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : AD // CK => \(\frac{MK}{MD}=\frac{CM}{AM}\left(1\right)\)
CD // AN => \(\frac{MD}{MN}=\frac{CM}{AM}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{MK}{MD}=\frac{MD}{MN}\Rightarrow MD^2=MK.MN\)
b) Sai đề
A B C D H K I M N J P 1 2
a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC
=> ^CBH = ^CDK.
Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g)
=> \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm).
b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\)
Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1)
BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc)
=> ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2)
Từ (1) và (2) => ^ABC = ^KCH
Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm).
c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC.
Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g)
=> \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3)
Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD)
=> \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\)
Mà CD=AB nên \(AB.AH=CP.AC\)(4)
Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\)
\(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm).
d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD)
Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm).
e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ.
=> \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales)
Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).
A B F E D M C
a,Ta có \(FM//AD\left(gt\right)\Rightarrow\widehat{EFA}=\widehat{DAB}\left(đvị\right);\widehat{FEA}=\widehat{DAE}\left(slt\right)\)
mà \(\widehat{DAB}=\widehat{DAE}\Rightarrow\widehat{EFA}=\widehat{FEA}\)
\(\Rightarrow\Delta AFE\)cân tại A
xét \(\Delta BMF\left(AD//MF\right)\)Áp dụng định lí ta-let ta có
\(\frac{BF}{AF}=\frac{BM}{DM}\)
b, \(\Delta ABC\)có AD là đường phân giác
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}^{^{\left(1\right)}}\)
Ta có AD//EM => \(\widehat{EMD}=\widehat{ADB};\widehat{ADM}=\widehat{EMC}\left(đvị\right)\)
Xét \(\Delta ECM\)và \(\Delta ACD\)có
\(\widehat{C}:chung \)
\(\widehat{EMC}=\widehat{ADC}\left(cmt\right)\)
\(\Rightarrow\Delta ECM\)VÀ \(\Delta ACD\)đồng dạng (g.g)
\(\Rightarrow\frac{CM}{CE}=\frac{CD}{CA}^{^{\left(2\right)}}\)
Chứng minh tương tự ta có
\(\Delta ABD\)và \(\Delta FAM\)đồng dạng (g.g)
\(\Rightarrow\frac{DB}{AB}=\frac{MB}{BF}^{^{\left(3\right)}}\)
Từ (1)(2)(3) \(\Rightarrow\frac{CM}{CE}=\frac{MB}{BF}\) mà CM=MB (gt) nên CE=BF
p/s: câu c để mình nghĩ tiếp
câu a
xét tam giác MDC có
NA//DC (AB//DC)
\(\Rightarrow\frac{MN}{MD}=\frac{MA}{MC}\)( hệ quả Thales) (1)
xét tam giác MKC có
DA//CK (DA//BC)
\(\Rightarrow\frac{MD}{MK}=\frac{MA}{MC}\)( hệ quả Thales) (2)
từ (1) và (2) \(\Rightarrow\frac{MD}{MK}=\frac{MN}{MD}\)
\(\Rightarrow MD^2=MN.MK\)
câu b mình chưa giải đc nhé
lưu ý : do DM/DN + DM/DK =1 nên DM<DN , DM <DK
b) theo câu a to có: DM^2 =MN.MK=>DM/MN=MK/DM => DM/(DM+MN) =MK/(MK+DM) => DM/DN =MK/DK =>DM/DN + DM/DK =MK/DK + DM/DK =>DM/DN + DM/Dk =(MK+DM)/DK=DK/DK = 1 (đpcm) A B C D M N K a) do AB//CD (tgABCD là hbh)nên tg AMN đ.dạng vs tgCMD =>MN/DM =AM/CM (1) mặt khác: AD//BC( tgABCD là hbh)=>tg AMD đ.dạng vs tgCMK (T.Lét) (T.Lét) =>DM/MK =AM/CM (2) từ (1) và (2) =>MN/DM=DM/MK=>DM^2 =MN.MK
a) Ta có AB // CD (ABCD hbh) -> AMN đồng dạng CMD (talet)
-> \(\frac{MN}{DM}=\frac{AM}{CM}\)(1)
Lại có AD // BC (ABCD hbh) -> AMD đồng dạng CKM (talet)
-> \(\frac{DM}{MK}=\frac{AM}{CM}\)(2)
(1) (2) -> \(\frac{MN}{DM}=\frac{DM}{MK}=DM^2=MK.MN\)
b) Ta có \(\frac{DM}{MK}=\frac{MK}{DM}\left(cma\right)\)
\(\Rightarrow\frac{DM}{DM+MN}=\frac{MK}{MK+DM}\)
\(\Rightarrow\frac{DM}{DN}=\frac{MK}{DK}\)
\(\Rightarrow\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK}{DK}+\frac{DM}{DK}\)
\(\frac{DM}{DN}+\frac{DM}{DK}=\frac{MK+DM}{DK}=\frac{DK}{DK}=1\left(đpcm\right)\)