Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M I K N H Q P
a.) Vì MQ//PI, theo hệ quả định lý ta lét ta có:
\(\dfrac{MQ}{PI}=\dfrac{QH}{IH}=\dfrac{MH}{PH}\)
=> \(\Delta MQH\) ~ \(\Delta PIH\) (c.c.c)
b. Chứng minh tuong tự ta có:
\(\Delta HMK\) ~ \(\Delta HPQ\) (c.c.c)
theo tỉ số \(\dfrac{MK}{PQ}=\dfrac{MK}{MN}=\dfrac{3}{5}\)
Vậy \(\dfrac{S_{HMK}}{S_{HPQ}}=\left(\dfrac{MK}{MN}\right)^2=\left(\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)
c.) Vì MK//PQ => theo ta lét ta có: \(\dfrac{QH}{HK}=\dfrac{HP}{HM}\left(1\right)\)
Vì QM//PI => theo ta lét ta có: \(\dfrac{HP}{HM}=\dfrac{IH}{HQ}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{QH}{HK}=\dfrac{HI}{HQ}=>HQ^2=HI.HK\)
a) Vì \(MNPQ\)là hình bình hành.
\(\Rightarrow MQ//NP\)(tính chất).
\(\Rightarrow MQ//PI\).
Xét \(\Delta HMQ\)và \(\Delta HPI\)có:
\(\widehat{MHQ}=\widehat{PHI}\)(vì đối đỉnh).
\(\widehat{QMH}=\widehat{IPH}\)(vì \(MQ//PI\)).
\(\Rightarrow\Delta HMQ~\Delta HPI\left(g.g\right)\)(điều phải chứng minh).
a,Chứng minh tam giác MPE đồng dạng với tam giác KPQ.
+PK là phân giác góc QPO.
=>^MPE = ^KPQ.(α) .
+ Tam giác OMN đều .=>^EMP=120 độ.
+ QK cũng là phân giác ^OQP.
=>^QKP = 180 - (^KQP+^KPQ).
Mà 2^KQP + 2^KPQ =180- 60 =120 độ.
=>^QKP=120 độ. Do đó:^EMP = ^QKP. (ß) .
Từ (α) và (ß), ta có tam giác MPE đồng dạng với tam giác KPQ.
b, Chứng minh tứ giác PQEF nội tiếp được trong đường tròn.
Do hai tam giác MPE và KPQ đồng dạng nên:^MEP=^KQP , hay: ^FEP=^FQP.
Suy ra, tứ giác PQEF nội tiếp được trong đường tròn.
c, Gọi D là trung điểm của đoạn PQ. Chứng minh tam giác DEF là một tam giác đều.
Do hai tam giác MPE và KPQ đồng dạng nên: PM/PK =PE/PQ . Suy ra: PM/PE =PK/PQ .
Ngoài ra: ^MPK=^EPQ . Do đó, hai tam giác MPK và EPQ đồng dạng.
Từ đó:^PEQ=^PMK=90độ .
Suy ra, D là tâm của đường tròn ngoại tiếp tứ giác PQEF.
Vì vậy, tam giác DEF cân tại D.
Ta có: ^FDP=2^FQD=^OQP ; ^EDQ=2^EPD=^OPQ .
^FDE=180 - (^FDP+^EDQ) =^POQ =60độ.
Từ đó, tam giác DEF là tam giác đều.