K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

M I K N H Q P

a.) Vì MQ//PI, theo hệ quả định lý ta lét ta có:

\(\dfrac{MQ}{PI}=\dfrac{QH}{IH}=\dfrac{MH}{PH}\)

=> \(\Delta MQH\) ~ \(\Delta PIH\) (c.c.c)

b. Chứng minh tuong tự ta có:

\(\Delta HMK\) ~ \(\Delta HPQ\) (c.c.c)

theo tỉ số \(\dfrac{MK}{PQ}=\dfrac{MK}{MN}=\dfrac{3}{5}\)

Vậy \(\dfrac{S_{HMK}}{S_{HPQ}}=\left(\dfrac{MK}{MN}\right)^2=\left(\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)

c.) Vì MK//PQ => theo ta lét ta có: \(\dfrac{QH}{HK}=\dfrac{HP}{HM}\left(1\right)\)

Vì QM//PI => theo ta lét ta có: \(\dfrac{HP}{HM}=\dfrac{IH}{HQ}\left(2\right)\)

Từ (1) và (2) => \(\dfrac{QH}{HK}=\dfrac{HI}{HQ}=>HQ^2=HI.HK\)

11 tháng 4 2017

S PI//MQ mà s k pai PN//MQ

13 tháng 5 2021

M N K P Q I H

13 tháng 5 2021

a) Vì \(MNPQ\)là hình bình hành.

\(\Rightarrow MQ//NP\)(tính chất).

\(\Rightarrow MQ//PI\).

Xét \(\Delta HMQ\)và \(\Delta HPI\)có:

\(\widehat{MHQ}=\widehat{PHI}\)(vì đối đỉnh).

\(\widehat{QMH}=\widehat{IPH}\)(vì \(MQ//PI\)).

\(\Rightarrow\Delta HMQ~\Delta HPI\left(g.g\right)\)(điều phải chứng minh).

12 tháng 3 2017

cho tam giác MNP, góc M=90o,đường cao MK 

a, cmr MK2=NK.KP

b, Tính MK,tính diện tích tam giác MNP, biết NK =4cm,KP=9cm

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm