K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

góc N chung

=>ΔHNM đồng dạng với ΔMNP

b: ΔMNP vuông tại M co MH vuông góc NP

nên MH^2=HN*HP

 

6 tháng 6 2020

Akai Haruma Bạn giúp mình với ạ! Mình cảm ơn trước nha!

18 tháng 4 2019

a,Xét tam giác HNM và tam giác MNP

Góc N chung

Góc NMP = góc NHM

=> Tam giác HNM đồng dạng tam giác MNP (gg)

b, Chứng minh đc tam giác MNP đồng dạng tam giác HMP(gg)

=> Tam giác HNM đồng dạng tam giác HMP

=>\(\frac{NH}{MH}\)=\(\frac{MH}{PH}\)

<=> NH.PH=MH2

18 tháng 4 2019

mình cần câu c

24 tháng 1 2022

a) Xét tam giác HMN và tam giác MNP:

Góc B chung.

Góc MHN = Góc NMP (cùng = 90o).

=> Tam giác HMN \(\sim\) Tam giác MNP (g - g).

b) Xét tam giác MNP vuông tại M, MH là đường cao:

=> MH= NH . PH (Hệ thức lượng trong tam giác vuông).

c) Xét tam giác NFH và tam giác MEH:

Góc FNH = Góc EMH (cùng phụ với góc MPN).

Góc NHF = Góc MHE (cùng phụ với góc MHF).

=> Tam giác NFH \(\sim\) Tam giác MEH (g - g).

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

\(\widehat{N}\) chung

Do đó: ΔHNM\(\sim\)ΔMNP

b: Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH^2=NH\cdot PH\)

25 tháng 3 2023

M N P H

 

 a)xét \(\Delta HMN\) và \(\Delta MNP \) 

\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)

\(\widehat{M}\) ( góc Chung)\)

\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)

 \(\)

b) Theo ddịnh lí Py-ta-go, ta có:

\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)

 

 

\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

 

) Theo ddịnh lí Py-ta-go, ta có:

\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)