Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{\left(a-b\right)^4}{\left(c-d\right)^4}=\left(\frac{a-b}{c-d}\right)^4\left(1\right)\)
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\left(đpcm\right)\)
Người lái xe trước khi đi thấy chỉ còn 3/5 thùng xăng, sợ không đủ nên người đó mua thêm 14 lít xăng nữa. Khi về tới nhà anh thấy chỉ còn 1/3 thùng xăng và tính ra xe tiêu thụ hết 30 lít xăng trong chuyến đi đó. Hỏi thùng xăng chứa bao nhiêu lít xăng?
mình không viết phân số được nên bạn thông cảm nha!
a) 1/2 + 2/3 + 3/4 + 4/5 < 44
=> 363/140 < 44
=> 363/140 < 6160/140
=> 363 < 6160
+ \(b=\frac{a+c}{2}\Rightarrow2b=a+c.\) (1)
+ \(c=\frac{2bd}{b+d}\Rightarrow bc+cd=2bd\)(2)
Thay (1) vào (2) ta có
\(bc+cd=\left(a+c\right)d=ad+cd\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)
\(\frac{1}{2.5}\)\(+\)\(\frac{1}{5.8}\)\(+\frac{1}{8.11}\)\(+...+\frac{1}{152.155}\)
=\(\frac{1}{2}\) \(-\frac{1}{5}\) \(+\frac{1}{5}\) \(-\frac{1}{8}\) \(+...+\frac{1}{152}\) \(-\frac{1}{155}\)
=\(\frac{1}{2}\)\(-\frac{1}{155}\)
=\(\frac{153}{310}\)
a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{1000}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{999}{1000}\right)\)
\(=-\frac{1.2.3...999}{2.3.4...1000}=-\frac{1}{1000}\)
b)\(B=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}:\frac{3}{4}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}:\frac{3}{4}=\frac{3}{4}:\frac{3}{4}=1\)
d) \(D=1+\frac{1}{2}+\frac{1}{4}+..+\frac{1}{512}+\frac{1}{1024}\)
=> \(2D=2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\)
=> \(2D-D=\left(2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}+\frac{1}{1024}\right)\)
=> \(D=2-\frac{1}{1024}=\frac{2047}{1024}\)
Đặt \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=5k\\b=6k\\c=7k\end{cases}}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(5k-6k\right)\left(6k-7k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)(1)
và \(\left(c-a\right)^2=\left(7k-5k\right)^2=\left(2k\right)^2=4k^2\)(2)
Từ (1) và (2) suy ra \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có;
\(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=b-c\\c-a=-2\left(b-c\right)=-2\left(a-b\right)\end{cases}}\)
\(\left(c-a\right)^2=-2\left(a-b\right)\cdot-2\left(b-c\right)=4\left(a-b\right)\left(b-c\right)\)(đpcm)
đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\left(\frac{b\left(t-1\right)}{d\left(t-1\right)}\right)^4=\left(\frac{b}{d}\right)^4=\frac{a^4+b^4}{c^4+d^4}=\frac{b^4\left(t+1\right)}{d^4\left(t+1\right)}=\left(\frac{b}{d}\right)^4\)