K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

kết bạn ko

25 tháng 5 2018

a) Ta có :

f(x1) - f(x2) = -5x1 - ( -5x2 ) = -5 . ( x1 - x2 ) > 0

\(\Rightarrow\)f(x1) > f(x2)

b) f(x1+4x2) = -5 . ( x1 + 4x2 ) = -5x1 + 4 . ( -5x2 ) = f(x1) + 4.f(x2)

c) -f(x) = - ( -5x ) = 5x 

f(-x) = -5 . ( -x ) = 5x

Vậy -f(x) = f(-x)

12 tháng 10 2014

Bài này quá dễ

\(g\left(\frac{1}{x0}\right)=c\left(\frac{1}{x0}\right)^2+b\frac{1}{x0}+a=\frac{ax0^2+bx0+x}{x0^{ }}=\frac{f\left(x0\right)}{x0^{ }}=0\)

8 tháng 5 2017

Giải:

a)

- Thu gọn: \( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=(18-16)+(-x^4-2x^4)+4x+x^2\)

\(f\left(x\right)=2-3x^4+4x+x^2\)

Sắp xếp: \(4x+x^2-3x^4+2\)

- Thu gọn: \(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+(x^4-6x^4)+4x^2+(7x-3x)\)

\(g\left(x\right)=2-5x^4+4x^2+4x\)

Sắp xếp: \(4x+4x^2-5x^4+2\)

b)

\(f(x)+g(x)=(4x+x^2-3x^4+2)+(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2+4x+4x^2-5x^4+2\)

\(=\left(4x+4x\right)+\left(x^2+4x^2\right)-\left(3x^4-5x^4\right)+\left(2+2\right)\)

\(=8x+5x^2-\left(-2x^4\right)+4\)

\(f(x)-g(x)=(4x+x^2-3x^4+2)-(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2-4x-4x^2+5x^4-2\)

\(=\left(4x+4x\right)+\left(x^2-4x^2\right)-\left(3x^4+5x^4\right)+\left(2-2\right)\)

\(=8x+\left(-3x^2\right)-8x^4\)

17 tháng 8 2018

Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.

a)Chứng minh rằng x0>0

b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)

15 tháng 9 2019

\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)

\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)

3 tháng 4 2020

a) Với x1 = x2 = 1 

\(\Rightarrow f\left(1\right)=f\left(1.1\right)\) 

\(\Rightarrow f\left(1\right)=f\left(1\right).f\left(1\right)\) 

\(\Rightarrow f\left(1\right).f\left(1\right)-f\left(1\right)=0\) 

\(\Rightarrow f\left(1\right).\left[f\left(1\right)-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\) 

Mà \(f\left(x\right)\ne0\) ( với mọi \(x\in R\) \(;\) \(x\ne0\) )

\(\Rightarrow f\left(1\right)\ne0\)

\(\Rightarrow f\left(1\right)-1=0\) 

\(\Rightarrow f\left(1\right)=1\)

b) Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)

\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)

\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=1\)

\(\Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)

\(\Rightarrow f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)