K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.

a)Chứng minh rằng x0>0

b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)

15 tháng 9 2019

\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)

\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)

Bài này đơn giản lắm bạn! Lưu ý mk thay đổi x0 thành m cho dễ ghi nha

Ta có \(f\left(m\right)=am^2+bm+c=0\)

Lại có \(g\left(\frac{1}{m}\right)=c\cdot\frac{1}{m^2}+b\cdot\frac{1}{m}+a=\frac{c}{m^2}+\frac{bm}{m^2}+\frac{am^2}{m^2}=\frac{am^2+bm+c}{m^2}=0\left(ĐPCM\right)\)

12 tháng 5 2015

vì 1 là 1 nghiệm của f(x) nên a*12+b*1+c=0 hay a+b+c=0

ta có g(1)=c*12+b*1+a=a+b+c=0

vậy 1 là 1 nghiệm của g(x)

7 tháng 7 2015

Viết đề còn sai =.=

g(x) = cx2 + bx + a

\(f\left(x_0\right)=ax^2_0+bx_0+c=0\)

\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x^2_0}+\frac{b}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\)

24 tháng 4 2017

dap an bang o dung ko