Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$
hay $x\in (1;2)$
Đáp án D
a/ \(\left[{}\begin{matrix}\Delta>0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)
b/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)
c/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\end{matrix}\right.\)
d/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\ge0\end{matrix}\right.\end{matrix}\right.\)
\(f\left(x\right)=\frac{2x^2+4}{x}=2x+\frac{4}{x}\ge2\sqrt{2x.\frac{4}{x}}=4\sqrt{2}\)
\(\Rightarrow f\left(x\right)_{min}=4\sqrt{2}\) khi \(2x=\frac{4}{x}\Rightarrow x=\sqrt{2}\)
1)\(\forall x1,x2\in\left(1,+\infty\right),x1\ne x2\)
\(f\left(x1\right)-f\left(x2\right)=\dfrac{1}{1-x1}-\dfrac{1}{1-x2}=\dfrac{1-x2-1+x1}{\left(1-x1\right)\left(1-x2\right)}=\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}\)
\(\dfrac{f\left(x1\right)-f\left(x2\right)}{x1-x2}=\dfrac{\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}}{x1-x2}=\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}\)
vì \(x1,x2\in\left(1;+\infty\right)\)nên \(\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-x1< 0\\1-x2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}>0\)
Vậy hàm số đồng biến trên \(\left(1;+\infty\right)\)
Lời giải:
\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)
Suy ra khẳng định $a$ đúng