Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lười làm lắm cứ xét từng khoản là được
Đầu tiên giải bất thứ nhất
Ở bất thứ 2 xét 2 trường hợp
- TH 1: \(m\le0\)
- TH2: \(m>0\)
+ \(\hept{\begin{cases}m-x^2>0\\x+m< 0\end{cases}}\)
+\(\hept{\begin{cases}m-x^2< 0\\x+m>0\end{cases}}\)
Lời giải:
\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)
Suy ra khẳng định $a$ đúng
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) (1)
\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}mx^2=x^2-3x-1\\x^2-3x-1-2x+5<0\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}f\left(x\right):=\left(m-1\right)x^2+3x+1=0\\x^2-5x+4<0\end{cases}\)
Mà \(x^2-5x+4<0\) (3) có tập nghiệm T=(1;4)
nên hệ (1) có nghiệm duy nhất khi và chỉ khi phương trình \(f\left(x\right):=\left(m-1\right)x^2+3x+1=0\) (2) có đúng một nghiệm \(x\in T\)
- Nếu m=1 thì (2) có nghiệm duy nhất \(x=-\frac{1}{3}\) không thuộc T
- Nếu \(m\ne1\) thì (2) là phương trình bậc 2 với \(\Delta=13-4m\)
+ Nếu \(\Delta=0\) hay \(m=\frac{13}{4}\) thì (2) có nghiệm \(x=-\frac{2}{3}\) không thuộc T
+ Nếu \(\Delta>0\) hay \(m<\frac{13}{4}\) thì (2) có nghiệm duy nhất thuộc T khi và chỉ khi xảy ra một trong hai trường hợp sau :
\(x_1\) \(\le\)1 < \(x_2\) < 4 (a)
hoặc
1< \(x_1\) <4 \(\le\) \(x_2\) (b)
# Nếu \(x_1\) = 1 \(\Leftrightarrow\) m-1+3+1=0 \(\Leftrightarrow\) m=-3 thì \(x_2=-\frac{1}{4}\) không thỏa mãn(a)
# Nễu \(x_2=4\) hay \(m=\frac{3}{16}\) thì \(x_1=-\frac{4}{13}\) không thỏa mãn (b)
Vậy ta phải có
\(x_1\) <1 < \(x_2\) < 4
hoặc
1< \(x_1\) <4 < \(x_2\)
\(\Leftrightarrow\) \(f\left(1\right)f\left(4\right)<0\)
\(\Leftrightarrow\) (m+3)(16m-3) <0
\(\Leftrightarrow\) -3<m<\(\frac{3}{16}\) Thỏa mãn điều kiện \(\Delta>0\)
Tóm lại -3<m<\(\frac{3}{16}\) là các giá trị cần tìm