Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)
Suy ra khẳng định $a$ đúng
\(m=1\) pt có nghiệm \(x=-\frac{2}{3}\)
Với \(m\ne1\Rightarrow\Delta'=\left(2m+1\right)^2-\left(1-m\right)\left(3m+1\right)=7m^2+2m\)
a/ Để pt \(f\left(x\right)=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\7m^2+2m< 0\end{matrix}\right.\) \(\Rightarrow-\frac{2}{7}< m< 0\)
b/Để \(f\left(x\right)< 0\) vô nghiệm \(\Leftrightarrow f\left(x\right)\ge0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}1-m>0\\7m^2+2m\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 1\\-\frac{2}{7}\le m\le0\end{matrix}\right.\) \(\Rightarrow-\frac{2}{7}\le m\le0\)
c/ Để \(f\left(x\right)\le0\) có vô số nghiệm
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\7m^2+2m>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=1\\\left[{}\begin{matrix}m< -\frac{2}{7}\\m>0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -\frac{2}{7}\\m>0\end{matrix}\right.\)
Lưu ý: phân biệt bất phương trình có vô số nghiệm và nghiệm đúng với mọi x. Muốn vô số nghiệm thì chỉ cần BPT có 1 khoảng nghiệm nào đó là đủ.
Mệnh đề đảo là : "Nếu \(f\left(x\right)\) có một nghiệm bằng 1 thì \(a+b+c=0\)". "Điều kiện cần và đủ để \(f\left(x\right)=ax^2+bx+c\) có một nghiệm bằng 1 là \(a+b+c=0\)"
a/ Với \(m=-\frac{1}{2}\) pt vô nghiệm
Với \(m\ne-\frac{1}{2}\Rightarrow x=\frac{3m-2}{2m+1}\)
\(\Rightarrow0\le\frac{3m-2}{2m+1}\le1\Rightarrow\left\{{}\begin{matrix}\frac{3m-2}{2m+1}\ge0\\\frac{3m-2}{2m+1}-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3m-2}{2m+1}\ge0\\\frac{m-3}{2m+1}\le0\end{matrix}\right.\) \(\Rightarrow\frac{2}{3}\le m\le3\)
b/ \(\left(2m+1\right)x\ge3m-2\)
- Với \(m=-\frac{1}{2}\) BPT luôn đúng
- Với \(m>-\frac{1}{2}\Rightarrow x\ge\frac{3m-2}{2m+1}\)
\(\Rightarrow\frac{3m-2}{2m+1}\le2\Leftrightarrow\frac{-m-4}{2m+1}\le0\) \(\Rightarrow m>-\frac{1}{2}\)
- Với \(m< -\frac{1}{2}\Rightarrow x\le\frac{3m-2}{2m+1}\)
\(\Rightarrow\frac{3m-2}{2m+1}\ge-1\Leftrightarrow\frac{5m-1}{2m+1}\ge0\) \(\Rightarrow m< -\frac{1}{2}\)
Vậy với mọi m thì BPT luôn có nghiệm thuộc đoạn đã cho
a/ \(\left[{}\begin{matrix}\Delta>0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)
b/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)
c/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\end{matrix}\right.\)
d/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\ge0\end{matrix}\right.\end{matrix}\right.\)