Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi bạn có nhầm đề không sao góc A < 900??? Bạn xem lại đề nhé
B A C D E H
Trước khi làm mình có lưu ý là mình sử dụng H luôn cho câu b nhé, dù ở câu c mới xuất hiện.
a/ Xét \(\Delta ABD\)vuông tại \(D\)có:
\(AD^2+BD^2=AB^2\left(pytago\right)\)
\(AD^2+8^2=10^2\)
\(AD^2=10^2-8^2=100-64=36\)
\(\Rightarrow AD=\sqrt{36}=6\left(cm\right)\)
b/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC
=> AH là đường cao thứ 3 (Vậy thôi đủ xài)
=> AH cũng là đường phân giác vì tam giác ABC cân tại A
Xét \(\Delta AEH\)và \(\Delta ADH\)có:
\(\hept{\begin{cases}AH:chung\\\widehat{EAH}=\widehat{DAH}\left(cmt\right)\\\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)
Xét \(\Delta AEC\)và \(\Delta ABD\)có:
\(\hept{\begin{cases}AE=AD\left(cmt\right)\\\widehat{AEC}=\widehat{ADB}=90^0\left(gt\right)\\\widehat{BAC}:chung\end{cases}}\)
\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)
\(\Rightarrow CE=BD\)
c/ (đã chứng minh câu b)
d/ Vì tam giác AEC = tam giác ADB
=> \(\widehat{ACE}=\widehat{ABD}\)
Mà: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\)
\(\Rightarrow\Delta BHC\)cân tại \(H\)
e/ Xét \(\Delta AHD\)vuông tại \(H\)có:
\(AD^2+HD^2=AH^2\left(pytago\right)\)
\(6^2+5^2=AH^2\)(vì 36 + 25 = 61)
\(\Rightarrow AH=\sqrt{61}\approx7,8\left(cm\right)\)
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
=>BE=DC
=>AE=AD
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
=>ΔAEI=ΔADI
=>góc EAI=góc DAI
=>AI là phân giác của góc BAC
c: ΔABC cân tại A
mà AM là trung tuyến
nên AM là phân giác của góc BAC
=>A,I,M thẳng hàng
`a,`
Vì `\Delta ABC` cân tại A
`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$
Xét `2\Delta` vuông và `BEC` và `CDB`:
`\text {BC chung}`
$\widehat {B} = \widehat {C}$
`=> \Delta BEC = \Delta CDB (ch-gn)`
`-> \text {BE = CD (2 cạnh tương ứng)}`
`b,`
Ta có: \(\left\{{}\begin{matrix}\text{AB = AE + BE}\\\text{AC = AD + CD}\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BE = CD}\end{matrix}\right.\)
`-> \text {AE = AD}`
Xét `2\Delta` vuông `AEI` và ` ADI`:
`\text {AE = AD}`
`\text {AI chung}`
`=> \Delta AEI = \Delta ADI (ch-cgv)`
`->` $\widehat {EAI} = \widehat {DAI} (\text {2 góc tương ứng})$
`-> \text {AI là tia phân giác của}` $\widehat {EAD}$
Mà \(\text{E}\in\text{AB, D}\in\text{AC}\)
`-> \text {AI là tia phân giác của}` $\widehat {BAC}$ `(1)`
`c,`
Vì M là trung điểm của AC
`-> \text {AM là đường trung tuyến của} \Delta ABC` `(2)`
Từ `(1)` và `(2)`
`-> \text {Ba điểm A, I, M thẳng hàng.}`
ta có AD+DC=AC
=>7+1=A
=>AC=8 CM
mà AB=AC( TAM GIÁC ABC CÂN TẠI A)
MẶT KHÁC AC=8 cm=>AB=8CM
ap dụng định lý py-ta-go cho tam giác ADB vuông tại D
=>AD^2+BD^2=AB^2
=>7^2+BD^2=8^2
=>BD^15
=> BD= CĂN 15(BD>0)
ÁP DỤNG ĐỊNH LÝ PY TA GO CHO TAM GIÁC BDC VUÔNG TẠI D
BD^2+DC^2+BC^2
=>CĂN 15^2+1^2=BC^2
=>15+1=BC^2
=>16=BC^2
=>BC=4(BC>0)
=>
a) xét tam giác AEC và tam giác ADB
góc ADB=góc AEC(=90 độ)
AB=AC ( Tam giác abc cân tại A)
góc A chung
Do đó tam giác AEC= tam giác ADB
b) Xét tam giác AEI và tam giác ADI có
góc AEI=ADI(=90 độ)
AD=AE(câu a)
AI chung
Do đó tam giác AEI = tam giác ADI
=> góc EAI=DAI (hai góc tương ứng)(1)
mà AI nằm giữa hai tia AB và AC(2)
Từ (1) và(2) AI là phân giác của hóc A