Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D O
a)Xét ΔADB và ΔAEC có:
\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)
\(\widehat{A}\) : góc chung
=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)
=> BD=CE
b) Vì ΔADB=ΔAEC(cmt)
=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)
Có: AB=AE+BE
AC=AD+DC
Mà: AB=AC(gt); AE=AD(cmt)
=>BE=DC
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\)
BE=DC(cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
=> ΔOEB=ΔODC(g.c.g)
c) Vì: ΔOEB=ΔODC (cmt)
=> OB=OC
Xét ΔAOB và ΔAOC có:
AB=AC(gt)
\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)
OB=OC(cmt)
=> ΔAOB=ΔAOC(c.g.c)
=> \(\widehat{OAB}=\widehat{OAC}\)
=> AO là tia pg của \(\widehat{BAC}\)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a ) Xét \(\Delta ABD\)và \(\Delta ACE\) có : \(BD=CE\left(gt\right);\hept{\begin{cases}\widehat{B}=\widehat{C}\\AB=AC\end{cases}\left(gt\right)}\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(cgc\right)\)
Xét \(\Delta BKE\)và \(\Delta CHD\) có : \(\widehat{B}=\widehat{C}\left(gt\right);\widehat{BKE}=\widehat{CHD}=90^0\left(gt\right);BE=DC\left(=BD+DE=EC+DE\right)\)
\(\Rightarrow\Delta BKE=\Delta CHD\)(CH-GN) \(\Rightarrow DH=EK\)
b) Theo a \(\Delta BKE\)= \(\Delta CHD\) \(\Rightarrow\widehat{KEB}=\widehat{HDC}\Rightarrow\Delta ODE\) cân tại O
c ) Có tam giác ODE cân tại O \(\Rightarrow OD=OE\)
\(DH=OD+OH;EK=OE+OK\) Mà HD = KE (cmt) ; OD = OE (cmt)=> OK = OH
=> O nằm trên đường chung trực của HK
\(\Delta BKE\)= \(\Delta CHD\) theo a nên BK = HC ; Mà AB = AC (gt) => AK = AH => A nằm trên đường chung trực của HK
=> AO là đường trung trực của tam giác cân AHK => AO là đừng phân giác của \(\widehat{BAC}\)
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác IEB và tam giác IDC có
góc IEB = góc IDC = 90 độ
BE=CD
góc BIE = góc CID (đối đỉnh)
=> tam giác IEB = tam giác IDC => IB=IC
c) Xét tam giác AIB và tam giác AIC có
AB=AC
IB=IC
AO: cạnh chung
=> tam giác AIB = tam giác AIC (c.c.c)
=> góc IAB=góc IAC
=> AI la tia phân giác góc BAC
K MK NHÁ
AI K MK ,MK K LẠI NÈ
a, xét tam giác abd và tam giác ace có
góc adb=góc aec =90o (gt)
góc a chung
ab=ac (do tam giác abc cân -gt)
suy ra tam giác abd= tam giác ace (cạnh huyền - góc nhọn)
b, có ad=ae (do tam giác abd = tam giác ace-cmt)
suy ra tam giác aed cân tại a
c, có ad=ae (cmt)
suy ra a thuộc đường trung trực của ed
xét tam giác aeh và tam giác adh có
góc aeh = góc adh=90o (gt)
ad=ae (cmt)
ah cạnh huyền chung
suy ra tam giác aeh=tam giác adh (cạnh huyền cạnh góc vuông)
suy ra hd=he
suy ra h thuộc đường trung trực của ed
suy ra ah là đường trung trực của ed
d,xét tam giác bdc và tam giác kdc có
bd=dk (gt)
góc bdc = góc cdk (=90o-gt)
cd chung
suy ra tam giác bdc = tam giác kdc (c.g.c)
suy ra góc dbc = góc dkc (1)
có góc bdc= góc abc - góc abd
góc ecb= góc acb - góc ace
mà góc abc=góc acb (do tam giác abc cân tại a -gt)
góc abd=góc ace (do tam giác abd=tam giác ace-cmt)
suy ra góc dbc= góc ecb (2)
từ(1)(2) suy ra góc ecb = góc dkc