K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

A B C E D O

a)Xét ΔADB và ΔAEC có:

\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)

\(\widehat{A}\) : góc chung

=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)

=> BD=CE

b) Vì ΔADB=ΔAEC(cmt)

=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)

Có: AB=AE+BE

AC=AD+DC

Mà: AB=AC(gt); AE=AD(cmt)

=>BE=DC

Xét ΔOEB và ΔODC có:

\(\widehat{OEB}=\widehat{ODC}=90^o\)

BE=DC(cmt)

\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)

=> ΔOEB=ΔODC(g.c.g)

c) Vì: ΔOEB=ΔODC (cmt)

=> OB=OC

Xét ΔAOB và ΔAOC có:

AB=AC(gt)

\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)

OB=OC(cmt)

=> ΔAOB=ΔAOC(c.g.c)

=> \(\widehat{OAB}=\widehat{OAC}\)

=> AO là tia pg của \(\widehat{BAC}\)

14 tháng 12 2018

a,

xét tam giác abd và tam giác ace có

ab=ac(gt)

góc adb=góc aec=90 độ(gt)

góc a chung

=>tam giác abd= tam giác ace(cgc)

=>bd=ce(2 cạnh tg ứng)

14 tháng 12 2018

từ cma ta có : tam giác abd=tam giác ace

=>ad=ae(2canhj tg ứng)

lại có ab=ac(gt)

=>ab-ad=ac-ae

=>bd=ec

xét tam giác oeb và tam giác odc có

be=cd(cmt)

góc eob=góc doc(đối đỉnh)

góc oeb=góc odc=90độ(gt)

=>tam giác oeb = tam giác odc có

10 tháng 1 2019

A B C D E O 1 1 H

10 tháng 1 2019

a, Tam giác BDA và tam giác CEA có :

BA = CA (gt)

góc A : chung 

góc BDA = góc CEA (=90o)

=> Tam giác BDA = tam giác CEA 

=> BD = CE ( 2 cạnh tương ứng )

b,Tam giác BDA = tam giác CEA (cmt) => AD=AE ( 2 cạnh tương ứng)

Ta có AB = AC (gt) , AE=AD(cmt) => AB - AE = AC - AD hay EB= DC 

Tam giác BED và tam giác CDB có 

BD = CE (cmt)

BC : cạnh chung 

EB = DC (cmt)

=> tam giác BEC =tam giác CDB 

=> góc BCE = góc CBD

Vì AB = AC => tam giác ABC cân tại A => góc B = góc C

mà góc BCE = góc CBD => góc EBD = góc DCE hay góc EBO = góc DCO 

\(\Delta OEB\)và \(\Delta ODC\)có :

\(\widehat{OEB}=\widehat{ODC}\left(=90^o\right)\)

EB = DC (cmt)

\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)

\(\Rightarrow\Delta OEB=\Delta ODC\left(g.c.g\right)\)

c,\(\Delta EBO=\Delta DCO\left(cmt\right)\Rightarrow BO=CO\)(2 cạnh tương ứng)

\(\Delta OAB\)và \(\Delta OAC\)

AB = AC (gt)

AO : cạnh chung 

OB = OC (gt)

\(\Rightarrow\Delta OAB=\Delta OAC\left(c.c.c\right)\Rightarrow\widehat{OAB}=\widehat{OAC}\)( 2 góc t.ứng)

AO là tia p/g của góc BAC

d,Đề sai nha 

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
a. Xét tam giác $ABD$ và $ACE$ có:

$\widehat{A}$ chung 

$\widehat{ADB}=\widehat{AEC}=90^0$

$AB=AC$ (gt)

$\Rightarrow \triangle ABD=\triangle ACE$ (ch-gn)

$\Rightarrow BD=CE$ 

b. Từ tam giác bằng nhau phần a suy ra $AD=AE$

Mà $AB=AC$

$\Rightarrow AB-AE=AC-AD$ hay $BE=CD$

Xét tam giác $OEB$ và $ODC$ có:

$\widehat{EOB}=\widehat{DOC}$ (đối đỉnh)

$\widehat{OEB}=\widehat{ODC}=90^0$

$EB=DC$ (cmt)

$\Rightarrow \triangle OEB=\triangle ODC$ (ch-cgv) 

c.

Từ tam giác bằng nhau phần b suy ra $OB=OC$

Xét tam giác $ABO$ và $ACO$ có:

$AO$ chung 

$AB=AC$ (gt)

$BO=CO$ (cmt)

$\Rightarrow \triangle ABO=\triangle ACO$ (c.c.c)

$\Rightarrow \widehat{BAO}=\widehat{CAO}$ 

$\Rightarrow AO$ là tia phân giác $\widehat{BAC}$ (đpcm)

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Hình vẽ:

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Suy ra: EC=DB

b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có 

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó:ΔOEB=ΔODC

c: Ta có: ΔOEB=ΔODC

nên OB=OC

Xét ΔAOB và ΔAOC có

AO chung

OB=OC

AB=AC
Do đó: ΔAOB=ΔAOC

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

16 tháng 3 2020

a, xét tam giác DCB và tam giác EBC có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (gt)

^CDB = ^BEC = 90

=> tam giác DCB = tam giác EBC (ch-gn)

=> BD = CE (đn)

b, tam giác DCB = tam giác EBC (câu a)

=> ^OCB = ^OBC (đn)

=> tam giác OBC cân tại O (đn)

=> OB = OC

xét tam giác ODC và tam giác OEB có : ^DOC = ^EOB (đối đỉnh)

^ODC = ^OEB = 90

=> Tam giác ODC = tam giác OEB (ch-gn)

c, 

tam giác DCB = tam giác EBC (câu a)

=> ^OCB = ^OBC (đn)

^ABC = ^ACB (câu a)

^DCO + ^OCB = ^ACB

^EBO + ^OBC = ^ABC

=> ^DCO = ^EBO 

xét tam giác ACO và tam giác ABO có : AB = AC (gt)

OC = OB (câu b)

=> tam giác ACO = tam giác ABO (c-g-c)

=> ^CAO = ^BAO mà AO nằm giữa AB và AC 

=> AO là pg của ^BAC (đn)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đó: ΔBAD=ΔCAE

Suy ra: BD=CE

b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC
c: Xét ΔAOB và ΔAOC có

AO chung

OB=OC

AB=AC
DO đó: ΔAOB=ΔAOC

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC