K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2023

A = x2 - 3x + x4 - 2x + x2 + 2

A = x4 + ( x2 + x2) - (3x + 2x) + 2

A = x4 + 2x2 - 5x +2

Bậc của đa thức là bậc 4

A(1) = 14 + 2.12 -5.1 + 2

A(1) = 0

a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5

=6x^5-4x^3+29x^2-2x+2

b: bậc của P(x) là 5

c: hệ số lớn nhất là 6

Hệ số tự do là 2

P(-1)=-6+4+29+2+2=29+2=31

20 tháng 3 2023

a) Ta có:

\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)

\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

b) Bậc của đa thức f(x) là 5

c) Ta có:

\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.

\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.

a: A(x)=3x^5+x^4-x^2+x

B(x)=3x^5-x^4+x^2+x-2

b: M(x)=B(x)-A(x)

=3x^5-x^4+x^2+x-2-3x^5-x^4+x^2-x

=-2x^4+2x^2+2x-2

 

4 tháng 5 2024

Nhìn ccccc

 

a: P(x)=-x^3+2x^3-x^2+3x^2+x-1=x^3+2x^2+x-1

Q(x)=-3x^3+2x^3-x^2+3x-4x+3=-x^3-x^2-x+3

b: H(x)=P(x)+Q(X)

=x^3+2x^2+x-1-x^3-x^2-x+3

=x^2+2

c: H(-1)=H(1)=1+2=3

d: H(x)=x^2+2>=2>0 với mọi x

=>H(x) ko có nghiệm

11 tháng 4 2022

\(P(x) = 2x^2 +x-x^2+x+1=x^2+2x+1\)

Khi \(x=1\) ⇔ \(P(1)=1^2+2.1+1=4\)

18 tháng 4 2021

câu 1

a, P(x)=\(5x^2-2x^4+2x^3+3\)

  \(P\left(x\right)=-2x^4+2x^3+5x^2+3\)

\(Q\left(x\right)=2x^4-5x^2-x+1-2x^3\)

\(Q\left(x\right)=2x^4-2x^3-5x^2-x+1\)

b, Ta có A(x)=P(x)+Q(x)

thay số A(x)=\(\left(-2x^4+2x^3+5x^2+3\right)+\left(2x^4-2x^3-5x^2-x+1\right)\)

                   =\(-2x^4+2x^3+5x^2+3+2x^4-2x^3-5x^2-x+1\)

                   \(=-x+4\)

c, A(x)=0 khi 

\(-x+4=0\)

\(x=4\)

vậy no của đa thức là 4

câu 2

tự vẽ hình nhé 

a, xét \(\Delta\) ABC cân tại A có AD là pg 

=> AD vừa là dg cao vừa là đg trung tuyến ( t/c trong tam giác cân )

xét \(\Delta\) ADB vg tại D ( áp dụng định lí Py ta go trong tam giác vg ) có 

\(AB^2=BD^2+AD^2\\ \Rightarrow BD^2=9\Rightarrow BD=3\)

Ta có D là trung đm của BC ( AD là đg trung tuyến ứng vs BC) 

=> BD=CD=\(\dfrac{1}{2}BC\)

=> BC= 6cm

câu b đang nghĩ 

9 tháng 8 2017

a)  \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)

   \(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\) 

Q(x)  \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)

b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\)\(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)

16 tháng 4 2018

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).