Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử cả 3 số a; b; c đều không chia hết cho 3
=> a; b; c chia cho 3 dư 0 hoặc 1
=> a2 ; b2 ; c2 chia cho 3 dư 1
=> a2 + b2 chia cho 3 dư 2 . Mà c2 chia cho 3 dư 1 nên a2 + b2 khác c2 ( trái với đề bài )
Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3
=> a.b.c chia hết cho 3
Ta luôn có 3ab chia hết cho 3
Vậy abc + 3ab chia hết cho 3
Giả sử cả 3 số a; b; c đều không chia hết cho 3
=> a; b; c chia cho 3 dư 0 hoặc 1
=> a2 ; b2 ; c2 chia cho 3 dư 1
=> a2 + b2 chia cho 3 dư 2. Mà c2 chia cho 3 dư 1 nên a2 + b2 khác c2 (trái với đề bài)
Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3
=> a.b.c chia hết cho 3
Ta luôn có 3ab chia hết cho 3
Vậy abc + 3ab chia hết cho 3
+) Chứng minh a3 - a luôn chia hết cho 2 và 3 với mọi số tự nhiên a:
a3 - a = a.(a2 -1) = a.(a - 1).(a+1)
Vì a- 1; a ; a+ 1 là 3 số tự nhiên liên tiếp nên tích (a-1).a.(a+1) luôn chia hết cho 2 và 3
+) khi đó , với mọi số tự nhiên a; b;c ta có: (a3 -a) + (b3 -b) + (c3 - c) luôn chia hết cho cả 2 và 3
=> (a3 + b3 + c3) - (a + b + c) luôn chia hết cho cả 2 và 3
=> (a3 + b3 + c3) - 2016 luôn chia hết cho cả 2 và 3. mà 2016 chia hết cho 2 và 3 nên (a3 + b3 + c3) chia hết cho cả 2 và 3
Vậy...
Em phải học hằng đảng thức lớp 8
Anh giải cho :
ta có:
<=> \(a^2-2ab+b+ab⋮9\)
<=> \(\left(a-b\right)^2+ab⋮9\)
=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)
Xét \(\left(a-b\right)^2⋮9\)
<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)
<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)
Xét \(ab⋮9\)
<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)
Từ (1) và (2) => \(a⋮3\)
\(b⋮3\)
Answer:
Ta có:
\(a^2-ab+b^2⋮9⋮3\)
\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2⋮3\)
\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)
\(\Rightarrow\left(a+b\right)^2⋮9\)
Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)
\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)
Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3
Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)
Giả sử cả 3 số a; b; c đều không chia hết cho 3
=> a; b; c chia cho 3 dư 0 hoặc 1
=> a2 ; b2 ; c2 chia cho 3 dư 1
=> a2 + b2 chia cho 3 dư 2. Mà c2 chia cho 3 dư 1 nên a2 + b2 khác c2 (trái với đề bài)
Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3
=> a.b.c chia hết cho 3
Ta luôn có 3ab chia hết cho 3
Vậy abc + 3ab chia hết cho 3
Làm sao để gửi câu hỏi lên vậy bạn?
Mình không biết làm thế nào cả
nè, mi chơi ki kiểu mất dạy nha.tao bái mi làm sư phụ