Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử cả 3 số a; b; c đều không chia hết cho 3
=> a; b; c chia cho 3 dư 0 hoặc 1
=> a2 ; b2 ; c2 chia cho 3 dư 1
=> a2 + b2 chia cho 3 dư 2 . Mà c2 chia cho 3 dư 1 nên a2 + b2 khác c2 ( trái với đề bài )
Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3
=> a.b.c chia hết cho 3
Ta luôn có 3ab chia hết cho 3
Vậy abc + 3ab chia hết cho 3
Giả sử cả 3 số a; b; c đều không chia hết cho 3
=> a; b; c chia cho 3 dư 0 hoặc 1
=> a2 ; b2 ; c2 chia cho 3 dư 1
=> a2 + b2 chia cho 3 dư 2. Mà c2 chia cho 3 dư 1 nên a2 + b2 khác c2 (trái với đề bài)
Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3
=> a.b.c chia hết cho 3
Ta luôn có 3ab chia hết cho 3
Vậy abc + 3ab chia hết cho 3
+) Chứng minh a3 - a luôn chia hết cho 2 và 3 với mọi số tự nhiên a:
a3 - a = a.(a2 -1) = a.(a - 1).(a+1)
Vì a- 1; a ; a+ 1 là 3 số tự nhiên liên tiếp nên tích (a-1).a.(a+1) luôn chia hết cho 2 và 3
+) khi đó , với mọi số tự nhiên a; b;c ta có: (a3 -a) + (b3 -b) + (c3 - c) luôn chia hết cho cả 2 và 3
=> (a3 + b3 + c3) - (a + b + c) luôn chia hết cho cả 2 và 3
=> (a3 + b3 + c3) - 2016 luôn chia hết cho cả 2 và 3. mà 2016 chia hết cho 2 và 3 nên (a3 + b3 + c3) chia hết cho cả 2 và 3
Vậy...
Giả sử cả 3 số a; b; c đều không chia hết cho 3
=> a; b; c chia cho 3 dư 0 hoặc 1
=> a2 ; b2 ; c2 chia cho 3 dư 1
=> a2 + b2 chia cho 3 dư 2. Mà c2 chia cho 3 dư 1 nên a2 + b2 khác c2 (trái với đề bài)
Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3
=> a.b.c chia hết cho 3
Ta luôn có 3ab chia hết cho 3
Vậy abc + 3ab chia hết cho 3
Làm sao để gửi câu hỏi lên vậy bạn?
Mình không biết làm thế nào cả
Giải:
Ta có: \(12=3.4\)
+) Nếu \(a,b,c\) \(⋮̸\) \(3\Rightarrow a^2,b^2,c^2\div3\) dư \(1\)
Khi đó \(a^2+b^2=BS3+2;c^2=BS3+1\) (vô lí)
\(\Rightarrow\left[{}\begin{matrix}a⋮3\\b⋮3\\c⋮3\end{matrix}\right.\)\(\Rightarrow abc⋮3\left(1\right)\)
+) Nếu \(a,b,c\) \(⋮̸\) \(4\Rightarrow a^2,b^2,c^2\div8\) dư \(1;4\)
Khi đó \(a^2+b^2\div8\) dư \(0;2;5;c^2\div5\) dư \(1;4\) (vô lí)
\(\Rightarrow\left[{}\begin{matrix}a⋮4\\b⋮4\\c⋮4\end{matrix}\right.\)\(\Rightarrow abc⋮4\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}abc⋮3\\abc⋮4\end{matrix}\right.\) Mà \(\left(3;4\right)=1\Rightarrow abc⋮12\)
Vậy nếu \(a^2+b^2=c^2\) thì \(abc⋮12\) (Đpcm)