Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ biểu thức của số trung bình cộng ta suy ra:
\(na=a_1+a_2+.....+a_n\).
Nếu tất cả các số: \(a_1,a_2,a_3,....,a_n\) đều nhỏ hơn a thì rõ ràng:
\(a_1+a_2+a_3+....+a_n< na.\)
Như vậy đẳng thức \(na=a_1+a_2+.....+a_n\) không xảy ra. ( Mâu thuẫn).
Ta có đpcm.
Giả sử trong 100 số đó không có 2 số nào bằng nhau.
\(\Rightarrow\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}+...+\dfrac{1}{\sqrt{x_{100}}}\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\)
\(< 1+\dfrac{2}{\sqrt{2}+\sqrt{1}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}+...+\dfrac{2}{\sqrt{100}+\sqrt{99}}\)
\(=1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=1+2\left(\sqrt{100}-\sqrt{1}\right)=19< 20\)
Vậy trong 100 số đã cho có ít nhất 2 số bằng nhau
Giả sử 100 số nguyên dương đã cho ko tồn tại \(x_i=x_k\)
Ko mất tính tổng quát giả sử \(x_1< x_2< x_3< ...< x_{100}\)
Vì \(x_1;x_2;x_3;...;x_{100}\) đều là các số nguyên dương suy ra \(x_1\ge1;x_2\ge2;....;x_{100}\ge100\)
Tức là có: \(VT< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}< 10< VP\)
Mâu thuẫn với giả thiết suy ra điều giả sử sai
Tức tồn tại \(x_i=x_k\) với \(i\ne k\) và \(i,k\in\left\{1;2;...;100\right\}\)
Lời giải:
Áp dụng định lý Viete, ta có:
\(\left\{\begin{matrix} x_1+x_2=-a\\ x_1x_2=b\end{matrix}\right.\)
Ta có: \(A=(|x_1|+1)(|x_2|+1)=|x_1x_2|+|x_1|+|x_2|+1\)
Nếu \(x_1;x_2\) trái dấu, giả sử \(x_1\geq 0; x_2\leq 0\)
\(\Rightarrow A=|b|+x_1-x_2+1\)
Ta có: \((x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2=a^2-4b\)
Vì \(-1\leq a, b\leq 1\Rightarrow \left\{\begin{matrix} a^2\leq 1\\ 4b\geq -4\end{matrix}\right.\Rightarrow a^2-4b\leq 5\)
\(\Rightarrow x_1-x_2\leq |x_1-x_2|\leq \sqrt{5}\) (1)
Mặt khác, \(-1\leq b\leq 1\rightarrow |b|\leq 1(2)\)
Từ \((1);(2)\Rightarrow A\leq 1+\sqrt{5}+1=2+\sqrt{5}\) (đpcm)
Nếu \(x_1,x_2\) cùng dấu thì \(b\geq 0\)
Áp dụng BĐT Bunhiacopxky: \((|x_1|+|x_2|)^2\leq (x_1^2+x_2^2)(1+1)=2[(x_1+x_2)^2-2b]=2(a^2-2b)\)
\(\Rightarrow |x_1|+|x_2|\leq \sqrt{2(a^2-2b)}\)
Vì \(\left\{\begin{matrix} -1\leq a\leq 1\rightarrow a^2\leq 1\\ b\geq 0\rightarrow 2b\geq 0\end{matrix}\right.\)
\(\rightarrow |x_1|+|x_2|\leq \sqrt{2}<\sqrt{5}\Rightarrow A< 2+\sqrt{5}\)
Từ hai th ta có đpcm
Áp dụng BĐT Côsi-Shaw ta có :
\(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\ge\dfrac{9}{\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}}\)
Đặt \(B=\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\)
Ta sẽ có : \(\dfrac{9}{B}\)
Mà : \(\dfrac{9}{B}\) đạt GTNN khi B lớn nhất .
Áp dụng BĐT Cô si , ta có :
\(\sqrt[3]{\left(a+7b\right).8.8}\le\dfrac{a+7b+8+8}{3}\) ( 1 )
Tương tự , ta có :
\(\sqrt[3]{\left(b+7c\right).8.8}\le\dfrac{b+7c+8+8}{3}\left(2\right)\)
\(\sqrt[3]{\left(c+7a\right).8.8}\le\dfrac{c+7a+8+8}{3}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right),\left(2\right),\left(3\right)\) ta có :
\(4.\left(\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\right)\le\dfrac{8}{3}\left(a+b+c\right)+16\)
\(\Leftrightarrow4B\le24\)
\(\Leftrightarrow B\le6\)
Vậy \(Max_B=6\) \(\Leftrightarrow Min_A=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(a=b=c=1.\)
Sai thôi nha
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow A\ge3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}\le\dfrac{8\left(a+b+c\right)}{3}=8\)
\(\Rightarrow\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}\ge\dfrac{1}{8}\)
\(\Rightarrow3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\ge3\sqrt[3]{\dfrac{1}{8}}=\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow A\ge\dfrac{3}{2}\)
\(\Rightarrow A_{min}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(a=b=c=1\)
cho toán lớp 10 ....Bố nó hiểu