K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2017

Lời giải:

Áp dụng định lý Viete, ta có:

\(\left\{\begin{matrix} x_1+x_2=-a\\ x_1x_2=b\end{matrix}\right.\)

Ta có: \(A=(|x_1|+1)(|x_2|+1)=|x_1x_2|+|x_1|+|x_2|+1\)

Nếu \(x_1;x_2\) trái dấu, giả sử \(x_1\geq 0; x_2\leq 0\)

\(\Rightarrow A=|b|+x_1-x_2+1\)

Ta có: \((x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2=a^2-4b\)

Vì \(-1\leq a, b\leq 1\Rightarrow \left\{\begin{matrix} a^2\leq 1\\ 4b\geq -4\end{matrix}\right.\Rightarrow a^2-4b\leq 5\)

\(\Rightarrow x_1-x_2\leq |x_1-x_2|\leq \sqrt{5}\) (1)

Mặt khác, \(-1\leq b\leq 1\rightarrow |b|\leq 1(2)\)

Từ \((1);(2)\Rightarrow A\leq 1+\sqrt{5}+1=2+\sqrt{5}\) (đpcm)

Nếu \(x_1,x_2\) cùng dấu thì \(b\geq 0\)

Áp dụng BĐT Bunhiacopxky: \((|x_1|+|x_2|)^2\leq (x_1^2+x_2^2)(1+1)=2[(x_1+x_2)^2-2b]=2(a^2-2b)\)

\(\Rightarrow |x_1|+|x_2|\leq \sqrt{2(a^2-2b)}\)

Vì \(\left\{\begin{matrix} -1\leq a\leq 1\rightarrow a^2\leq 1\\ b\geq 0\rightarrow 2b\geq 0\end{matrix}\right.\)

\(\rightarrow |x_1|+|x_2|\leq \sqrt{2}<\sqrt{5}\Rightarrow A< 2+\sqrt{5}\)

Từ hai th ta có đpcm

NV
29 tháng 4 2020

a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)

Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:

\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)

Thay vào ta được:

\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)

\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)

\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)

Vậy \(0< m\le1\)

b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)

\(x_1^3+x_2^3\le16\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)

\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)

\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)

\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)

\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))

Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)

26 tháng 7 2016

a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.

AH
Akai Haruma
Giáo viên
29 tháng 12 2019

Lời giải:

PT (2) $\Leftrightarrow x+y+xy+1=0$

$\Leftrightarrow (x+1)(y+1)=0$

$\Rightarrow x+1=0$ hoặc y+1=0$

Nếu $x+1=0$ suy ra $x=-1$. Thay vào PT $(1)$ suy ra $y^2=2\Rightarrow y=\pm \sqrt{2}$

Nếu $y+1=0\Rightarrow y=-1$. Thay vào PT $(1)$ suy ra $x^2=2\Rightarrow x=\pm \sqrt{2}$

Vậy $(x,y)=(-1; \pm \sqrt{2}); (\pm \sqrt{2}; -1)$

Từ đây ta suy ra:

A đúng.

B đúng

C sai

D đúng

NV
12 tháng 11 2018

\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2\ge0\Rightarrow-2\le m\le2\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)

\(\Rightarrow P=\left|m^2-2-m-4\right|=\left|m^2-m-6\right|=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)

Do \(-2\le m\le2\Rightarrow0\le\left(m-\dfrac{1}{2}\right)^2\le\dfrac{25}{4}\)

\(\Rightarrow\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\le0\) \(\Rightarrow P=\dfrac{25}{4}-\left(m-\dfrac{1}{2}\right)^2\le\dfrac{25}{4}\)

\(\Rightarrow P_{max}=\dfrac{25}{4}\) ; dấu "=" xảy ra khi \(m=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Lời giải:

Để pt có 2 nghiệm pb thì \(\Delta'=m^2-2(m^2-2)>0\Leftrightarrow 2> m> -2\)

Nếu $x_1,x_2$ là nghiệm của pt đã cho thì theo định lý Viete ta có:

\(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=\frac{m^2-2}{2}\end{matrix}\right.\)

Khi đó:

\(P=|2x_1x_2+x_1+x_2-4|=|2.\frac{m^2-2}{2}+(-m)-4|\)

\(=|m^2-m-6|=|(m-3)(m+2)|\)

\(=|m-3||m+2|=(3-m)(m+2)=m+6-m^2\) (do \(-2< m< 2\))

\(=\frac{25}{4}-(m-\frac{1}{2})^2\leq \frac{25}{4}\)

Vậy \(P_{\max}=\frac{25}{4}\Leftrightarrow m=\frac{1}{2}\)

19 tháng 1 2017

a, Với m=2 \(\Rightarrow\) phương trình (1)

\(\Leftrightarrow\) \(x^2-4x+4\) =0

\(\Leftrightarrow x=2\)