Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm d1 ; d2 thỏa mãn phương trình
\(\frac{4}{3}x+1=x-1\Leftrightarrow\frac{1}{3}x=-2\Leftrightarrow x=-6\)
=> y = \(-6-1=-7\)
Vậy d1 cắt d2 tại A(-6;-7)
Để d3 đi qua A(-6;-7) => A thuộc d3
<=> \(-6m+m+3=-7\Leftrightarrow-5m=-10\Leftrightarrow m=2\)
Vậy với m = 2 thì 3 điểm đồng quy
3 đường thẳng (d1) (d2) (d3) đồng quy
=> \(d_1\cap d_2\)
Hoành độ giao điểm của 2 đường thẳng \(\left(d_1\right),\left(d_2\right)\) là nghiệm pt:
x+1=-x+3
\(\Leftrightarrow\)2x=2\(\Leftrightarrow x=1\) thay vào y=x+1
=>y=2
Vậy tọa độ giao điểm của 2 đường thẳng là A(1;2)
Vì 3 đường thẳng đồng quy
=>thay (x;y)=(1;2) vào \(\left(d_3\right)\) ta có:
2=m+m-1
\(\Leftrightarrow2=2m-1\Leftrightarrow m=\dfrac{3}{2}\)
Vậy để 3 đường thẳng đồng quy thì \(m=\dfrac{3}{2}\)
b: Tọa độ giao là:
-1/2x+5=1/3x+1 và y=1/3x+1
=>-5/6x=-4 và y=1/3x+1
=>x=4:5/6=4*6/5=24/5 và y=1/3*24/5+1=24/15+1=8/5+1=13/5
c: Vì (d3)//(d1) nên (d3): y=-1/2x+b
Thay y=2 vào (d2), ta được:
x/3+1=2
=>x=3
Thay x=3 và y=2 vào y=-1/2x+b, ta được:
b-3/2=2
=>b=7/2
d: Thay x=24/5 và y=13/5 vào (d4), ta được:
24/5(m-3)+m+1=13/5
=>24/5m-72/5+m+1=13/5
=>29/5m-67/5=13/5
=>29/5m=80/5
=>m=80/5:29/5=80/5*5/29=80/29
Xét PTHĐGĐ của (d1) và (d2)
\(\frac{2}{5}x+\frac{1}{2}=\frac{3}{5}x-\frac{5}{2}\)
\(\Leftrightarrow x=15\)\(\Rightarrow y=\frac{13}{2}\)\(\Rightarrow\left(15;\frac{13}{2}\right)\)
Để 3 đt đồng quy\(\Leftrightarrow\left(15;\frac{13}{2}\right)\in\left(d_3\right)\)
Thay x=15; y=\(\frac{13}{2}\) vào (d3) có:
\(15k+3,5=\frac{13}{2}\Leftrightarrow k=\frac{1}{5}\)
Phương trình hoành độ của giao điểm \(\left(d_1\right);\left(d_2\right)\) là:
\(5x-3=-4x+3\)
\(\Leftrightarrow9x=6\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Thay \(x=\dfrac{2}{3}\) vào \(\left(d_1\right)\) ta được:
\(y=5\cdot\dfrac{2}{3}-5\)
\(\Leftrightarrow y=-\dfrac{5}{3}\)
Thay \(x=\dfrac{2}{3};y=-\dfrac{5}{3}\) vào \(\left(d_3\right)\) ta được:
\(-\dfrac{5}{3}=\dfrac{3}{2}\cdot\dfrac{2}{3}+m\)
\(\Leftrightarrow-\dfrac{5}{3}=1+m\)
\(\Leftrightarrow m=-\dfrac{8}{3}\)
Vậy \(m=-\dfrac{8}{3}\Leftrightarrow\left(d_1\right);\left(d_2\right);\left(d_3\right)\) đồng quy.
Hoành độ giao điểm của 2 đường thẳng \(\left(d_1\right)\) và \(\left(d_2\right)\) là nghiệm của phương trình:
\(5x-3=-4x+3\)
\(\Leftrightarrow5x+4x=3+3\)
\(\Leftrightarrow9x=6\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
\(\rightarrow y=5\cdot\dfrac{2}{3}-3=\dfrac{1}{3}\)
Thay \(x=\dfrac{2}{3}\) và \(y=\dfrac{1}{3}\) vào đường thẳng \(\left(d_3\right)\) ta có:
\(\dfrac{1}{3}=\dfrac{3}{2}\cdot\dfrac{2}{3}+m\)
\(\Leftrightarrow m+1=\dfrac{1}{3}\)
\(\Leftrightarrow m=-\dfrac{2}{3}\)
Vậy \(m=-\dfrac{2}{3}\) thì 3 đường thẳng \(\left(d_1\right),\left(d_2\right),\left(d_3\right)\) đồng quy