K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

3 đường thẳng (d1) (d2) (d3) đồng quy
=> \(d_1\cap d_2\)
Hoành độ giao điểm của 2 đường thẳng \(\left(d_1\right),\left(d_2\right)\) là nghiệm pt:
x+1=-x+3
\(\Leftrightarrow\)2x=2\(\Leftrightarrow x=1\) thay vào y=x+1
=>y=2
Vậy tọa độ giao điểm của 2 đường thẳng là A(1;2)
Vì 3 đường thẳng đồng quy
=>thay (x;y)=(1;2) vào \(\left(d_3\right)\) ta có:
2=m+m-1
\(\Leftrightarrow2=2m-1\Leftrightarrow m=\dfrac{3}{2}\)
Vậy để 3 đường thẳng đồng quy thì \(m=\dfrac{3}{2}\)

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3Bài 2: Cho đường thẳng (d): y = 4xviết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)Bài 4: Cho 2 hàm số bậc...
Đọc tiếp

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017

b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3

Bài 2: Cho đường thẳng (d): y = 4x

viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10

Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)

Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1

a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2

b) Vẽ đồ thị 2 hàm số trên khi m = 2

c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung

Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)

Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5

a) Tìm m để 3 đường thẳng đã cho đồng quy

b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi

 

0
28 tháng 10 2018

Gọi A là giao của (d1) và (d2)

⇒ x + 3 = 3x - 1 ⇔ 2x = 4 ⇔ x = 2 ⇒ y = 5

Nên A (2; 5)

Để 3 đường thẳng đồng quy thì (d3) đi qua A.

⇔ 2m + 2m - 1 = 5

\(m=\dfrac{3}{2}\)

Vậy với m = 3/2 thì 3 đường thẳng đã cho đồng quy

31 tháng 10 2021

Hoành độ giao điểm d1 ; d2 thỏa mãn phương trình 

\(\frac{4}{3}x+1=x-1\Leftrightarrow\frac{1}{3}x=-2\Leftrightarrow x=-6\)

=> y = \(-6-1=-7\)

Vậy d1 cắt d2 tại A(-6;-7) 

Để d3 đi qua A(-6;-7) => A thuộc d3 

<=> \(-6m+m+3=-7\Leftrightarrow-5m=-10\Leftrightarrow m=2\)

Vậy với m = 2 thì 3 điểm đồng quy 

7 tháng 12 2018

a) Để (d1) song song vơi (d2) thì:

a = a'

\(\Leftrightarrow m-1=3\)

\(\Leftrightarrow m=4\)

Vậy (d1) // (d2) khi m = 4 

b) Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì:

\(\Rightarrow\)y = 0

\(\Leftrightarrow0=3x+1\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=1\)

\(\Leftrightarrow x=\frac{1}{3}\)

Với x = \(\frac{1}{3}\)và y = 0 ta có:

(m - 1).\(\frac{1}{3}\)+ 2m - 5 = 0

\(\Leftrightarrow\frac{m-1}{3}+\frac{6m}{3}-\frac{15}{3}=0\)

\(\Leftrightarrow m-1+6m-5=0\) 

\(\Leftrightarrow7m=6\)

\(\Leftrightarrow m=\frac{6}{7}\)

Vậy (d1) cắt (d2) tại 1 điểm trên trục hoành khi m = \(\frac{6}{7}\)

6 tháng 4 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)

pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)

Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)

Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)

a: Để (d1)//(d2) thì m=2m-3 và \(m^2-1< >-2m-4\)

=>2m-3=m

=>m=3

b: Để (d1) cắt (d2) thì m<>2m-3

=>m<>3

c: Để (d1) vuông góc (d2) thì m(2m-3)=-1

\(\Leftrightarrow2m^2-3m+1=0\)

=>(2m-1)(m-1)=0

=>m=1/2 hoặc m=1