Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^2-y^2+t^2=21\\x^2+3y^2+4z^2=101\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
(1)+(2)\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2+4z^2+t^2=122\\x,y,z,t\in N\end{matrix}\right.\) \(\Rightarrow t=2n\)
\(\Leftrightarrow x^2+y^2+2z^2+2n^2=61\) (3)
\(\Leftrightarrow M=61+2n^2\)
(1) trừ (2)\(\Leftrightarrow y^2+z^2-n^2=20\)
n=0 ; y=2; z=4; x=5
=> Min M =61 khi n=0
(x;y;z;t)=(5;2;4;0)
Lấy (1) cộng (2) ta được
\(\hept{\begin{cases}2x^2+2y^2+4z^2+t^2=122\\x,y,z,t\in N\end{cases}=>}t=2n\)
\(\Leftrightarrow x^2+y^2+2z^2+2n^2=61\)
\(\Rightarrow M=61+2n^2\)
(1) trừ (2)\(\Leftrightarrow y^2+z^2-n^2=20\)
n=0 ; y=2; z=4; x=5
=> Min M =61 khi n=0
(x;y;z;t)=(5;2;4;0)
Lấy (1) cộng (2) theo từng vế ta có:
\(2\left(x^2+y^2+2z^2+t^2\right)-t^2=122\)
\(\Rightarrow M=\frac{122+t^2}{2}=61+\frac{t^2}{2}\ge61\forall t\)
=> Min M = 61 khi t = 0
Với t = 0 từ (1) \(\Rightarrow x^2-y^2=21\)
Hay: \(\left(x+y\right)\left(x-y\right)=21\)
Vì \(x,y,z,t\in N\) nên ta có 2 TH:
TH1:
\(\hept{\begin{cases}x-y=1\\x+y=21\end{cases}\Leftrightarrow x=11,y=10}\) (loại vì không thỏa mãn (2) )
TH2:
\(\hept{\begin{cases}x-y=3\\x+y=7\end{cases}\Leftrightarrow x=5,y=2}\)(thỏa mãn)
Thay vào (2) ta được: z = 4
Vậy: Min M = 61 tại x = 5, y = 2, z = 4, t = 0
=.= hk tốt!!
\(\hept{\begin{cases}x^2-y^2+t^2=21\left(1\right)\\x^2+3y^2+4z^2=101\left(2\right)\end{cases}}\)
Cộng (1) và (2) ta có :
\(2x^2+2y^2+4z^2+t^2=122\Leftrightarrow2\left(x^2+y^2+2z^2+t^2\right)-t^2=122\)
\(\Rightarrow2M=122+t^2\ge122\Rightarrow m\ge61\Rightarrow Min_M=61.\)
Khi \(t=0\Rightarrow\hept{\begin{cases}x^2-y^2=21\\x^2+3y^2+4z^2=101\left(3\right)\end{cases}.}\)
Vì x, y nguyên không âm nên :
\(\left(x-y\right)\left(x+y\right)=21\)
TH1: \(\hept{\begin{cases}x-y=1\\x+y=21\end{cases}\Leftrightarrow}\hept{\begin{cases}x=11\\y=10\end{cases}}\)Thế vào (3) ta được \(4z^2=-320\left(loại\right).\)
TH2: \(\hept{\begin{cases}x-y=3\\x+y=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=5\\y=2\end{cases}.}\)Thế vào (3) ta được \(4z^2=64\Leftrightarrow z^2=16\Leftrightarrow z=4\left(z\ge0\right).\)
Vậy ta tìm được \(\left(x,y,z,t\right)=\left(5;2;4;0\right)\)thì \(Min_M=61.\)
cộng vế 2 cái đẳng thức đề cho, đc: \(2x^2+2y^2=122-t^2-4z^2\) \(\Rightarrow x^2+y^2=61-\frac{t^2}{2}-2z^2\)
Thay vào M đc: \(M=61+\frac{t^2}{2}\) (t nguyên ko âm) => Min M = 61 khi t =0
Giải hệ \(\hept{\begin{cases}x^2+3y^2+4z^2=101\\x^2+y^2+2z^2=61\\x^2-y^2=21\end{cases}}\)sẽ ra đc giá trị của x2, y2, z2. nhưng hệ này vô số nghiệm thì phải
Đặt \(P=x^2+y^2+2z^2+t^2\)
Cộng vế với vế: \(2x^2+2y^2+4z^2+t^2=122\)
\(\Leftrightarrow2P-t^2=122\Rightarrow2P=122+t^2\ge122\)
\(\Rightarrow P\ge61\)
\(P_{min}=61\) khi \(\left(x;y;z;t\right)=\left(5;2;4;0\right)\)
1) Ta có : \(2x^2+y^2+3=\left(x^2+y^2\right)+\left(x^2+1\right)+2\)
Áp dụng bất đẳng thức cô si ta có: \(x^2+y^2\ge2xy,x^2+1\ge2x\)
Nên :\(2x^2+y^2+3\ge2\left(xy+x+1\right)\)
\(\Rightarrow\frac{2}{2x^2+y^2+3}\le\frac{2}{2\left(xy+x+1\right)}=\frac{1}{xy+x+1}\)
Chứng minh tương tự ta có :\(\frac{2}{2y^2+z^2+3}\le\frac{1}{yz+y+1}\)
\(\frac{2}{2z^2+x^2+3}\le\frac{1}{xz+z+1}\)
Do đó \(\frac{2}{2x^2+y^2+3}+\frac{2}{2y^2+z^2+3}+\frac{2}{2z^2+x^2+3}\le\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xz+z+1}\)
Ta sẽ chứng minh:\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xz+z+1}=1\)
Thật vậy:VT=\(\frac{xyz}{xy+x+xyz}+\frac{1}{yz+y+1}+\frac{y}{xyz+yz+y}\left(v\text{ì }xyz=1\right)\)
=\(\frac{yz}{yz+y+1}+\frac{1}{yz+y+1}+\frac{y}{yz+y+1}=\frac{yz+y+1}{yz+y+1}=1\)
Dó đó :\(\frac{2}{2x^2+y^2+3}+\frac{2}{2y^2+z^2+3}+\frac{2}{2z^2+x^2+3}\le1\)
Dấu "=" xảy ra khi:x=y=z=1
câu 2:
HPT\(\Leftrightarrow\left\{\begin{matrix}6x+2xy=24\left(1\right)\\x^2+y^2+7y=20\left(2\right)\end{matrix}\right.\)
cộng vế với vế 2 pt (1) và (2):
\(x^2+y^2+2xy+7x+7y=44\)\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)-44=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(x+y+11\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+y=4\\x+y=-11\end{matrix}\right.\)
với x+y=4 <=> x=4-y.thế vào pt (1):3(4-y)+(4-y)y=12
\(\Leftrightarrow12-3y+4y-y^2=12\Leftrightarrow y^2-y=0\)
\(\Leftrightarrow\left[\begin{matrix}y=0\\y=1\end{matrix}\right.\)
y=0 => x=4
y=1=> x=3
tương tự với TH còn lại
\(\left\{{}\begin{matrix}x=2-y-z\\z^2-2xy+4=0\end{matrix}\right.\) \(\Rightarrow z^2-2y\left(2-y-z\right)+4=0\)
\(\Rightarrow z^2-4y+2y^2+2yz+4=0\)
\(\Rightarrow z^2+2yz+y^2+y^2-4y+4=0\)
\(\Rightarrow\left(z+y\right)^2+\left(y-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}z+y=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\z=-2\\x=2\end{matrix}\right.\)
b/ Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)
\(\Rightarrow P_{min}=1\) khi \(x=y=z=\frac{2}{3}\)
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
Thay \(z=4-x-y\) vào phương trình dưới:
\(x^2+y^2+\left(4-x-y\right)^2=\frac{11}{2}\)
\(\Leftrightarrow2x^2+2y^2+2xy-8x-8y+16=\frac{11}{2}\)
\(\Leftrightarrow x^2+x\left(y-4\right)+y^2-4y+\frac{21}{4}=0\)
\(\Delta=\left(y-4\right)^2-4\left(y^2-4y+\frac{21}{4}\right)\)
\(=y^2-8y+16-4y^2+16y-21=-3y^2+8y-5\)
\(=\left(5-3y\right)\left(y-1\right)\ge0\)
\(\Leftrightarrow1\le y\le\frac{5}{3}\)
\(y_{max}=\frac{5}{3}\), thay vào hệ ban đầu tìm x, z
\(y_{min}=1\), làm tương tự.
Thật ra tui cũng chả biết có nghiệm hay không đâu :>
Chưa có giải hệ :>>>