K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 9 2019

\(\left\{{}\begin{matrix}x=2-y-z\\z^2-2xy+4=0\end{matrix}\right.\) \(\Rightarrow z^2-2y\left(2-y-z\right)+4=0\)

\(\Rightarrow z^2-4y+2y^2+2yz+4=0\)

\(\Rightarrow z^2+2yz+y^2+y^2-4y+4=0\)

\(\Rightarrow\left(z+y\right)^2+\left(y-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}z+y=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\z=-2\\x=2\end{matrix}\right.\)

b/ Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=z=\frac{2}{3}\)

NV
11 tháng 2 2020

a/ Đơn giản là dùng phép thế:

\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)

\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)

Thế vào pt cuối:

\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

Vậy là xong

b/ Sử dụng hệ số bất định:

\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)

\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)

Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)

Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):

\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)

7 tháng 1 2020

+ \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=4\Rightarrow x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)

+ \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)\)

+ Tương tự : \(y+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\); \(z+1=\left(\sqrt{x}+\sqrt{z}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

+ \(P=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}+\sqrt{z}\right)^2\left(\sqrt{z}+\sqrt{x}\right)^2}\cdot\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

\(=2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=2\)

25 tháng 8 2019

\(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)

\(\Leftrightarrow x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}=4\)

\(\Leftrightarrow2+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)

Khi đó ta có : \(x+1=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow x+1=\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)\)

\(\Leftrightarrow x+1=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\)

Tương tự : \(y+1=\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\);

\(z+1=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

Ta lần lượt xét các biểu thức :

+) \(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)

\(=\sqrt{\left[\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\right]^2}\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

+) \(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{z}\right)+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

Do đó ta có :

\(P=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\cdot\frac{2}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(P=2\)

Vậy...

NV
4 tháng 8 2020

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:

\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)

\(\Rightarrow yz=5xy\Rightarrow z=5x\)

Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)

\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)

Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)

\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)

4 tháng 8 2020

Dạ em cảm ơn ạ.

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\) 2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\) b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr:...
Đọc tiếp

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương

b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)

2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\)

b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\)

c) \(x,y>0;\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2020\). Min P = x + y

d) \(x,y,z>0;\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\). Min \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

e) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z+4xyz=4\end{matrix}\right.\) Cmr: \(\left(1+xy+\frac{y}{z}\right)\left(1+yz+\frac{z}{x}\right)\left(1+zx+\frac{x}{y}\right)\ge27\)

f) \(\left\{{}\begin{matrix}x,y,z\ge1\\3x^2+4y^2+5z^2=52\end{matrix}\right.\). Min P = x + y + z

g) \(x,y>0\). Min \(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)

6
23 tháng 2 2020

?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương

giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!

NV
23 tháng 2 2020

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z>0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

25 tháng 4 2020

\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)

\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)

Áp dụng bđt AM-GM ta có

\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)

Dấu "=" xảy ra khi a=b=c=1

NV
25 tháng 4 2020

a/ Một cách đơn giản hơn:

\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

\(P=\frac{x-\frac{1}{2}+y-\frac{1}{2}}{y^2}+\frac{y-\frac{1}{2}+z-\frac{1}{2}}{z^2}+\frac{z-\frac{1}{2}+x-\frac{1}{2}}{x^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(P=\left(x-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(y-\frac{1}{2}\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)+\left(z-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(P\ge\frac{2}{xy}\left(x-\frac{1}{2}\right)+\frac{2}{yz}\left(y-\frac{1}{2}\right)+\frac{2}{zx}\left(z-\frac{1}{2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(P\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\)

\(P\ge\sqrt{3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}-1=\sqrt{3}-1\)

\(P_{min}=\sqrt{3}-1\) khi \(x=y=z=\sqrt{3}\)

22 tháng 8 2019

\(a)DK:z\ne1\)

\(\left\{{}\begin{matrix}\frac{4}{z-1}+2x=7\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{z-1}+x=\frac{7}{2}=3,5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-5y=-5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=-8\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\5x=15\\\frac{2}{z-1}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(T/m\right)\)

Vậy ...

\(b)DK:\left\{{}\begin{matrix}x,y,z\ne0\\x,y,z>0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{matrix}\right.\)

\(\Leftrightarrow x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}=6\)

\(\Leftrightarrow\left(x-2.\sqrt{x}.\frac{1}{\sqrt{x}}+\frac{1}{x}\right)+\left(y-2.\sqrt{y}.\frac{1}{\sqrt{y}}+\frac{1}{y}\right)+\left(z-2\sqrt{z}.\frac{1}{\sqrt{z}}+\frac{1}{z}\right)+2+2+2=6\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=0\)

\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2;\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2;\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=\frac{1}{\sqrt{x}}\\\sqrt{y}=\frac{1}{\sqrt{y}}\\\sqrt{z}=\frac{1}{\sqrt{z}}\end{matrix}\right.\)

\(\Leftrightarrow x=y=z=1\left(T/m\right)\)

Vậy ...