Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I C M A D B
Do \(\widehat{AIB}=90^0\Rightarrow\widehat{ACB}=45^0\) hoặc \(\widehat{ACB}=135^0\Rightarrow\widehat{ACD}=45^0\Rightarrow\Delta ACD\) vuông cân tại D nên DA=DC
Hơn nữa IA=IC => \(DI\perp AC\Rightarrow\) đường thẳng AC thỏa mãn điều kiện AC qua điểm M và AC vuông góc ID.
Viết phương trình đường thẳng AC : \(x-2y+9=0\)
Gọi \(A\left(2a-9;a\right)\in AC\). Do \(DA=\sqrt{2}d\left(D,AC\right)=2\sqrt{10}\) nên
\(\sqrt{\left(2a-8\right)^2+\left(a+1\right)^2}=2\sqrt{10}\Leftrightarrow a^2-6a+5=0\)
\(\Leftrightarrow\begin{cases}a=1\Rightarrow A\left(-7;1\right)\\a=5\Rightarrow A\left(1;5\right)\end{cases}\)
Theo giả thiết đầu bài \(\Rightarrow A\left(1;5\right)\)
Viết phương trình đường thẳng DB : \(x+3y+4=0\). Gọi \(B\left(-3b-4;b\right)\)
Tam giác IAB vuông tại I nên : \(\overrightarrow{IA.}\overrightarrow{IB}=0\Leftrightarrow3\left(-3b-2\right)+4\left(b-1\right)=0\Leftrightarrow b=-2\Rightarrow B\left(2;-2\right)\)
Đáp số \(A\left(1;5\right);B\left(2;-2\right)\)
Theo đề bài ta có :
Lúc đi:
147x+105y+126z=17640(1)
Khi về do hướng đi ngược lại nên đoạn lên dốc và xuống dóc sẽ đổi cho nhau : x,y lần lượt là đoạn xuống dốc và đoạn lên dốc . Ta có :
105x+147y+126z=26460(2)
Lấy (1)+(2) Ta rút gọn nên được :
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105