K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Đặt: \(\left\{{}\begin{matrix}A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\\B=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\end{matrix}\right.\)

Ta có:

\(B=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{59.60}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{59}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{60}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{60}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{30}\right)\)

\(=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\)

\(\Rightarrow B=A\)

Vậy \(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\) (Đpcm)

11 tháng 4 2017

Ta có:

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+......+\dfrac{1}{59.60}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{59}-\dfrac{1}{60}\)

= \(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{59}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)

- \(2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)

= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{60}\right)\) - \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)+ \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)

- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)

= \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)

Vậy\(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+....+\dfrac{1}{59.60}\)

20 tháng 6 2017

a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$

$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$

$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$

b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$

$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$

Nhận xét thấy:

\(\dfrac{1}{1.2}\)= 1-\(\dfrac{1}{2}\); \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\);...

Ta có

A= 1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)

A= 1- \(\dfrac{1}{6}\)

A= \(\dfrac{5}{6}\)

Vậy A= \(\dfrac{5}{6}\)

26 tháng 4 2017

CAU NAY RAT DE NHA BAN

A=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)

A=1-\(\dfrac{1}{6}\)

=>A=\(\dfrac{5}{6}\)

13 tháng 5 2018

A<B

19 tháng 3 2024

A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{217.218}\)

A = \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{217}-\dfrac{1}{218}\)

A = 1 - \(\dfrac{1}{218}\)

B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}\) + ... + \(\dfrac{1}{218}\)

Xét dãy số 110; 111; 112; ...; 218, dãy số này có số số hạng là:

         (218 - 110) : 1 + 1  =  109 (số)

Mặt khác \(\dfrac{1}{110}\) > \(\dfrac{1}{111}>\dfrac{1}{112}>...>\dfrac{1}{218}\)

⇒ B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}+...+\dfrac{1}{218}\) < \(\dfrac{1}{110}\) + \(\dfrac{1}{110}\)+ ... +\(\dfrac{1}{110}\)  

   B < \(\dfrac{1}{110}\) x 109

B  <  1 - \(\dfrac{1}{110}\)

\(\dfrac{1}{128}\) < \(\dfrac{1}{110}\) ⇒ A =  1 - \(\dfrac{1}{128}\) > 1 - \(\dfrac{1}{110}\)  > B 

A > B 

Ta có:

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

17 tháng 4 2017

cảm ơn bạn nhiều

27 tháng 7 2017

Câu hỏi của Phương Uyên - Toán lớp 7 | Học trực tuyến

mình ko có thời gian

bạn tự xem nhé