K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Lời giải:

Theo tính chất tia phân giác: 

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{75}{100}=\frac{3}{4}(1)$

$BC=BD+CD=75+100=175$

Theo định lý Pitago:

$AB^2+AC^2=BC^2=175^2(2)$

Từ $(1); (2)\Rightarrow AB=105; AC=140$ (cm) 

$BH=\frac{AB^2}{BC}=\frac{105^2}{175}=63$ (cm) - theo hệ thức lượng trong tam giác vuông

$CH=BC-BH=175-63=112$ (cm)

$AH=\sqrt{AB^2-BH^2}=\sqrt{105^2-63^2}=84$ (cm)

$HD=BD-BH=75-63=12$ (cm) 

$AD=\sqrt{AH^2+DH^2}=\sqrt{84^2+12^2}=60\sqrt{2}$ (cm)

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Hình vẽ:

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Quốc Sơn - Toán lớp 9 | Học trực tuyến

BC=15+20=35cm

BD/CD=3/4

=>AB/AC=3/4

BH/CH=(AB/AC)^2=9/16

=>BH/9=CH/16=35/25=1,4

=>BH=12,6cm; CH=22,4cm

24 tháng 7 2016

A B C H D 51 68

\(\Delta ABC\)vuông đường cao AH: 

\(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BC\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}}\)

\(\Leftrightarrow\frac{BH}{CH}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)

Vì AD là đường phân giác \(\Delta ABC\)(gt);

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{51}{68}=\frac{3}{4}\)

\(\Rightarrow\left(\frac{AB}{AC}\right)^2=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

\(\Rightarrow\frac{BH}{CH}=\frac{9}{14}\)

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\frac{BH}{9}=\frac{CH}{16}=\frac{BH+CH}{9+16}=\frac{BC}{25}=\frac{BD+CD}{25}=\frac{119}{25}\)

\(\Rightarrow BH=\frac{9.119}{25}=42,84cm\)

\(\Rightarrow CH=\frac{16.119}{25}=76,16cm\)

24 tháng 7 2016

BH/CH = 9/16 chứ sao lại là 9/14

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{4.8^2}{3.6}=6.4\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=36\\AC^2=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)

hay \(AB=\dfrac{3}{4}AC\)

Ta có: BD+CD=BC

nên BC=17,5cm

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=\dfrac{1225}{4}\)

\(\Leftrightarrow AC^2=196\)

hay AC=14cm

\(\Leftrightarrow AB=\dfrac{3}{4}AC=10.5\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=8.4\left(cm\right)\\BH=6.3\left(cm\right)\end{matrix}\right.\)