K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Do a/b < 1 => a < b

=> a.c < b.c

=> a.c + a.b < b.c + a.b

=> a.(b + c) < b.(a + c)

=> a/b < a+c/b+c

=> đpcm

Ủng hộ mk nha bn ♡_♡, bài mk đúng 100% lun, cái này lớp 6 học rùi mà

6 tháng 6 2019

#)Sửa đề : 

CMR : Nếu a/b < c/d (b,d thuộc N*) thì a/b < a+c/ b+d < c/d

#)Giải :

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{cb}{bd}\)

Vì b, d thuộc N* => ad < bc

=> ad + ab < bc + ab => a( b + d ) < b( a + c ) => \(\frac{a}{b}< \frac{a+c}{b+d}\)

Tương tự, ta có :

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

8 tháng 9 2017

Bài làm

- Xét a(b+2001)=ab+2001a

        b(a+2001)=ab+2001b

- Ta xét 3 trường hợp sau:

+Nếu a>b =>2001a>2001b

                 =>a(b+2001)>b+(a+2001)

                 =>a/b > a+2001/b+2001

+Nếu a<b =>2001a<2001b

                 =>a(b+2001)<b+(a+2001)

                 =>a/b < a+2001/b+2001

+Nếu a=b =>a/b = a+2001/b+2001

8 tháng 9 2017

a, Ta có: \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{bc}{bd}\end{cases}}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

15 tháng 8 2016

Mình làm câu a

\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)

\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)

15 tháng 8 2016

nhân chéo thôi

26 tháng 8 2019

a) Ta có:  a<b

                =>a.n<b.n

               =>a.n+a.b< b.n +a.b

               =>a(b+n)<b(a+n)

               =>\(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

Vậy nếu a<b thì a/b <a+n / b+n

  b) Ta có :  a>b

=>a.n>b.n

=>a.n+a.b>b.n+a.b

=>a(b+n)>b(a+n)

=>a/b>a+n/b+n

   Vậy a>b thì a/b> a+n/b+n

  c) Ta có : a=b

=>a.n=b.n

=>a.n+ a.b =b.n+a.b

=>a(b+n)=b(a+n)

=>a/b=a+n/b+n

  Vậy a= b thì a/b =a+n/b+n