K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

24 tháng 5 2019

mk biết 

khi bạn gửi câu hỏi mà muốn viết phân số 

Bạn nhấn vào kí tự thứ 3 hình chữ M nằm ngang rồi tim hình phân số và chọn là song

Ta cá:Vi x<y nen \(\frac{a}{m}< \frac{b}{m}\)

\(\Rightarrow a< b\)

\(\Rightarrow a+a< a+b\)

\(\Rightarrow2a< a+b\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)

\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\)

\(\Rightarrow x< z\left(1\right)\)

Ta lại cá:

\(a< b\)

\(\Rightarrow a+b< b+b\)

\(\Rightarrow a+b< 2b\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\)

\(\Rightarrow z< y\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow x< z< y\)(điều phải chứng minh)

Nhớ h cho mk nha

26 tháng 8 2019

a) Ta có:  a<b

                =>a.n<b.n

               =>a.n+a.b< b.n +a.b

               =>a(b+n)<b(a+n)

               =>\(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

Vậy nếu a<b thì a/b <a+n / b+n

  b) Ta có :  a>b

=>a.n>b.n

=>a.n+a.b>b.n+a.b

=>a(b+n)>b(a+n)

=>a/b>a+n/b+n

   Vậy a>b thì a/b> a+n/b+n

  c) Ta có : a=b

=>a.n=b.n

=>a.n+ a.b =b.n+a.b

=>a(b+n)=b(a+n)

=>a/b=a+n/b+n

  Vậy a= b thì a/b =a+n/b+n

15 tháng 9 2019

Bài 1 :

Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
    = 2(2+n)+ m(2+n)
    = 4+ 2n+ 2m+ mn
    = 4+ m+ m+ n+ n+ mn
    = (4+ m+ n) +(m +n +mn)
    = (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm

~ Hok tốt ~

15 tháng 9 2019

1)\(\hept{\begin{cases}a>2\\b>2\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}< \frac{1}{2}\\\frac{1}{b}< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}< 1\Leftrightarrow\frac{a+b}{ab}< 1\Leftrightarrow a+b< ab\)

2) \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)

5 tháng 9 2015

a) a > b mà b \(\in\) N* nên a \(\in\) N*

 \(a>b\Rightarrow an>bn\) (vì a,b,n \(\in\) N*)

\(\Rightarrow ab+an>ab+bn\) hay \(a.\left(b+n\right)>b.\left(a+n\right)\)

Do đó \(\frac{a}{b}>\frac{a+n}{b+n}\). Đề sai. 

17 tháng 5 2017

fhfgjjgjgf

16 tháng 10 2019

Bài 1:

a) \(x^2\le x\)

\(\Leftrightarrow x^2-x\le0\)

\(\Leftrightarrow x\left(x-1\right)\le0\)

Mà x > x - 1 nên \(\hept{\begin{cases}x\ge0\\x-1\le0\end{cases}}\Leftrightarrow0\le x\le1\)

b) \(\hept{\begin{cases}ab=2\\bc=3\\ac=54\end{cases}}\Rightarrow\left(abc\right)^2=324=\left(\pm18\right)^2\)

\(TH1:abc=18\Rightarrow\hept{\begin{cases}c=9\\a=6\\b=\frac{1}{3}\end{cases}}\)

\(TH2:abc=-18\Rightarrow\hept{\begin{cases}c=-9\\a=-6\\b=\frac{-1}{3}\end{cases}}\)