Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
mk biết
khi bạn gửi câu hỏi mà muốn viết phân số
Bạn nhấn vào kí tự thứ 3 hình chữ M nằm ngang rồi tim hình phân số và chọn là song
Ta cá:Vi x<y nen \(\frac{a}{m}< \frac{b}{m}\)
\(\Rightarrow a< b\)
\(\Rightarrow a+a< a+b\)
\(\Rightarrow2a< a+b\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\)
\(\Rightarrow x< z\left(1\right)\)
Ta lại cá:
\(a< b\)
\(\Rightarrow a+b< b+b\)
\(\Rightarrow a+b< 2b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\)
\(\Rightarrow z< y\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow x< z< y\)(điều phải chứng minh)
Nhớ h cho mk nha
a) Ta có: a<b
=>a.n<b.n
=>a.n+a.b< b.n +a.b
=>a(b+n)<b(a+n)
=>\(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)
Vậy nếu a<b thì a/b <a+n / b+n
b) Ta có : a>b
=>a.n>b.n
=>a.n+a.b>b.n+a.b
=>a(b+n)>b(a+n)
=>a/b>a+n/b+n
Vậy a>b thì a/b> a+n/b+n
c) Ta có : a=b
=>a.n=b.n
=>a.n+ a.b =b.n+a.b
=>a(b+n)=b(a+n)
=>a/b=a+n/b+n
Vậy a= b thì a/b =a+n/b+n
Bài 1 :
Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
= 2(2+n)+ m(2+n)
= 4+ 2n+ 2m+ mn
= 4+ m+ m+ n+ n+ mn
= (4+ m+ n) +(m +n +mn)
= (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm
~ Hok tốt ~
1)\(\hept{\begin{cases}a>2\\b>2\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}< \frac{1}{2}\\\frac{1}{b}< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}< 1\Leftrightarrow\frac{a+b}{ab}< 1\Leftrightarrow a+b< ab\)
2) \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)
a) a > b mà b \(\in\) N* nên a \(\in\) N*
\(a>b\Rightarrow an>bn\) (vì a,b,n \(\in\) N*)
\(\Rightarrow ab+an>ab+bn\) hay \(a.\left(b+n\right)>b.\left(a+n\right)\)
Do đó \(\frac{a}{b}>\frac{a+n}{b+n}\). Đề sai.
Bài 1:
a) \(x^2\le x\)
\(\Leftrightarrow x^2-x\le0\)
\(\Leftrightarrow x\left(x-1\right)\le0\)
Mà x > x - 1 nên \(\hept{\begin{cases}x\ge0\\x-1\le0\end{cases}}\Leftrightarrow0\le x\le1\)
b) \(\hept{\begin{cases}ab=2\\bc=3\\ac=54\end{cases}}\Rightarrow\left(abc\right)^2=324=\left(\pm18\right)^2\)
\(TH1:abc=18\Rightarrow\hept{\begin{cases}c=9\\a=6\\b=\frac{1}{3}\end{cases}}\)
\(TH2:abc=-18\Rightarrow\hept{\begin{cases}c=-9\\a=-6\\b=\frac{-1}{3}\end{cases}}\)