Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a; b; c là độ dài 3 cạnh một tam giác nên \(a>b-c\) (bđt tam giác)
\(\Leftrightarrow a^2>\left(b-c\right)^2\)
\(\Leftrightarrow a^2-\left(b-c\right)^2>0\)
\(\Leftrightarrow a^2-\left(b^2-2bc+c^2\right)>0\)
\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)(đpcm)
Tui đang lười
Làm theo cái này
Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath
Vào câu hỏi tương tự cũng được. Ohe?
2.
a, Có : (a+b+c).(1/a+1/b+1/c)
>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
= 9
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
2.
b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )
<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2
<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2
<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Giải
Áp dụng BĐT Cauchy ta có:
\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Tương tự ta cũng có: \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng vế theo vế các BĐT trên với nhau ta được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge2>1\) (Đpcm)
Giả sử \(0< a\le c\)suy ra \(a^2\le c^2\)
Ta có: \(a^2+b^2>5c^2\)
\(\Rightarrow a^2+b^2>5a^2\)
\(\Rightarrow b^2>4a^2\)
\(\Rightarrow b>2a^{\left(1\right)}\)
Lại có: \(c^2\ge a^2\)
\(\Rightarrow b^2+c^2\ge a^2+b^2>5c^2\)
\(\Rightarrow b^2>4c^2\)
\(\Rightarrow b>2c^{\left(2\right)}\)
Cộng (1), (2)
\(\Rightarrow2b>2a+2c\)
\(\Rightarrow b>a+c\)(vô lí)
\(\Rightarrow c< a\)
CMTT suy ra \(c< b\)
Vậy \(a>c;b>c\)