K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

oi the ma cung hoi

1 tháng 8 2017

a,b,c thuộc N nữa phương tề. 

giả sử b và c đều ko chia hết cho 3 

=> b^2;c^2 chia 3 dư 1 hoặc dư 2 

=> a^2 chia 3 dư 2 hoặc 1 (tương ứng ở trên) 

=> a^2 có dạng 3k+2 hoặc 3k+1 

xét các k=1;2;3 thì a đều ko thuộc N => vô lý 

=> DPCM 

làm dc rk thôi, ko làm dc nữa 

---kenny cold----

Nguồn:myself

cách 2

b hoặc c chỉ chia hết cho 3 nếu a là bội số của 5 tức là a = 5k với k là số tự nhiên. 

Còn trong các trường hợp khác thì không, 

thí dụ: 

a = 5 thì b = 3 và c =4 vậy b chia hết cho 3. 

a = 10 thì b = 6 và c = 8 vậy trong hai số có b chia hết cho 3 tức là b hoặc c chia hết cho 3

cách 3

nếu a, b, c là ba cạnh của một tam giác vuông (a là cạnh huyền) thì b hoặc c chia hết cho 3? 

Đề này có vấn đề rồi ví dụ nhé : 

Trên hai cạnh của góc vuông xAy đặt AB = AC = 4 . 

Tam giác ABC vuông cạnh huyền BC = a 

cạnh AC = b, cạnh AB = c cả hai cạnh này đều không chia hết cho 3

19 tháng 10 2016

\(a^2=\left(m^2+n^2\right)^2=m^4+n^4+2m^2n^2.\)

\(b^2+c^2=\left(m^2+n^2\right)^2+4m^2n^2=m^4+n^4-2m^2n^2+4m^2n^2=m^4+n^4+2m^2n^2\)

=> \(a^2=b^2+c^2\) => a; b; c là cạnh của 1 tam giác vuông có cạnh huyền là a 2 cạnh góc vuông là b và c

DD
18 tháng 6 2021

Câu 1: 

\(a^3=a^2.a=\left(b^2+c^2\right).a>b^2.b+c^2.c=b^3+c^3\)

Câu 2: 

\(\left|x-3y\right|^{2007}+\left|y+4\right|^{2008}=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)