Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c thuộc N nữa phương tề.
giả sử b và c đều ko chia hết cho 3
=> b^2;c^2 chia 3 dư 1 hoặc dư 2
=> a^2 chia 3 dư 2 hoặc 1 (tương ứng ở trên)
=> a^2 có dạng 3k+2 hoặc 3k+1
xét các k=1;2;3 thì a đều ko thuộc N => vô lý
=> DPCM
làm dc rk thôi, ko làm dc nữa
---kenny cold----
Nguồn:myself
cách 2
b hoặc c chỉ chia hết cho 3 nếu a là bội số của 5 tức là a = 5k với k là số tự nhiên.
Còn trong các trường hợp khác thì không,
thí dụ:
a = 5 thì b = 3 và c =4 vậy b chia hết cho 3.
a = 10 thì b = 6 và c = 8 vậy trong hai số có b chia hết cho 3 tức là b hoặc c chia hết cho 3
cách 3
nếu a, b, c là ba cạnh của một tam giác vuông (a là cạnh huyền) thì b hoặc c chia hết cho 3?
Đề này có vấn đề rồi ví dụ nhé :
Trên hai cạnh của góc vuông xAy đặt AB = AC = 4 .
Tam giác ABC vuông cạnh huyền BC = a
cạnh AC = b, cạnh AB = c cả hai cạnh này đều không chia hết cho 3
\(a^2=\left(m^2+n^2\right)^2=m^4+n^4+2m^2n^2.\)
\(b^2+c^2=\left(m^2+n^2\right)^2+4m^2n^2=m^4+n^4-2m^2n^2+4m^2n^2=m^4+n^4+2m^2n^2\)
=> \(a^2=b^2+c^2\) => a; b; c là cạnh của 1 tam giác vuông có cạnh huyền là a 2 cạnh góc vuông là b và c
Câu 1:
\(a^3=a^2.a=\left(b^2+c^2\right).a>b^2.b+c^2.c=b^3+c^3\)
Câu 2:
\(\left|x-3y\right|^{2007}+\left|y+4\right|^{2008}=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)