Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2 -b^2 -c^2 +2bc = a^2 -(b^2 +c^2 -2bc)
= a^2 -(b-c)^2
= (a-b+c)(a+b-c)
Theo bất đẳng thức tam giác, ta có:
a+c>b và a+b>c
Suy ra: a-b+c >0 và a+b-c >0
Do đó: (a-b+c)(a+b-c) >0
Vậy a^2 - b^2 -c^2 + 2bc >0
Chúc bạn học tốt.
Có : Đề=\(a^2-\left(b^2-2bc+c^2\right)\)\(=a^2-\left(b-c\right)^2\)\(=\left(a-b+c\right)\left(a+b-c\right)\)
mà theo đề ta có: \(a+c>b\)và \(a+b>c\)(theo bất đẳng thức trong tam giác-a,b,c là 3 cạnh của một tam giác)
==> \(a-b+c>0\)và \(a+b-c>0\)
Nhân vế theo vế hai biểu thức trên với nhau ta có:
\(\left(a-b+c\right)\left(a+b-c\right)>0\)==> Đpcm
Nhớ k mik nha
Ta có\(a>b-c\)
Mà a;b;c là độ dài 3 cạnh của 1 tam giác nên a;b;c>0
\(\Rightarrow a^2>\left(b-c\right)^2\)
\(\Leftrightarrow a^2>b^2-2bc+c^2\)
\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)
Vậy \(a^2-b^2-c^2+2bc>0\)
Giả sử \(0< a\le c\)suy ra \(a^2\le c^2\)
Ta có: \(a^2+b^2>5c^2\)
\(\Rightarrow a^2+b^2>5a^2\)
\(\Rightarrow b^2>4a^2\)
\(\Rightarrow b>2a^{\left(1\right)}\)
Lại có: \(c^2\ge a^2\)
\(\Rightarrow b^2+c^2\ge a^2+b^2>5c^2\)
\(\Rightarrow b^2>4c^2\)
\(\Rightarrow b>2c^{\left(2\right)}\)
Cộng (1), (2)
\(\Rightarrow2b>2a+2c\)
\(\Rightarrow b>a+c\)(vô lí)
\(\Rightarrow c< a\)
CMTT suy ra \(c< b\)
Vậy \(a>c;b>c\)
Vì a; b; c là độ dài 3 cạnh một tam giác nên \(a>b-c\) (bđt tam giác)
\(\Leftrightarrow a^2>\left(b-c\right)^2\)
\(\Leftrightarrow a^2-\left(b-c\right)^2>0\)
\(\Leftrightarrow a^2-\left(b^2-2bc+c^2\right)>0\)
\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)(đpcm)
Tui đang lười
Làm theo cái này
Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath
Vào câu hỏi tương tự cũng được. Ohe?