K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

a)Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)

\(\Rightarrow2a^2-4ab-ab+2b^2=0\)

\(\Rightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\a=2b\end{cases}}\)

Thay vào tính được P

b)sai đề

19 tháng 7 2018

a^2 -b^2 -c^2 +2bc = a^2 -(b^2 +c^2 -2bc)

                            = a^2 -(b-c)^2

                            = (a-b+c)(a+b-c)

Theo bất đẳng thức tam giác, ta có: 

a+c>b và a+b>c

Suy ra: a-b+c >0 và a+b-c >0

Do đó: (a-b+c)(a+b-c) >0

Vậy a^2 - b^2 -c^2 + 2bc >0

Chúc bạn học tốt.

22 tháng 7 2015

\(CMR:a^2-b^2-c^2+2bc>0\)

            <=>\(\left(a-b-c\right)^2+2ab-2bc+2ac+2bc>0\)

            <=>\(\left(a-b-c\right)^2+2ac+2ab>0\) ,(a,b,c >0) dfcm

10 tháng 10 2017

Có : Đề=\(a^2-\left(b^2-2bc+c^2\right)\)\(=a^2-\left(b-c\right)^2\)\(=\left(a-b+c\right)\left(a+b-c\right)\)

mà theo đề ta có: \(a+c>b\)và \(a+b>c\)(theo bất đẳng thức trong tam giác-a,b,c là 3 cạnh của một tam giác)

==> \(a-b+c>0\)và \(a+b-c>0\)

Nhân vế theo vế hai biểu thức trên với nhau ta có:

\(\left(a-b+c\right)\left(a+b-c\right)>0\)==> Đpcm

Nhớ k mik nha

10 tháng 3 2020

Theo bất đẳng thức tam giác \(a>b-c\rightarrow a^2>\left(b-c\right)^2.\)

=> \(a^2>b^2-2bc+c^2\rightarrow a^2+2bc>b^2+c^2.\)

10 tháng 3 2020

áp dụng bđt tam giác ta có : 

a > b - c <=> a^2 > b^2 - 2bc + c^2 <=> a^2 + 2bc > b^2 + c^2

4 tháng 3 2018

bài 2 b)

theo BĐT tam giác ta có

a>b-c

=> a2> (b-c)2

=>a2> b2-2bc+c2

=> a2+2bc>b2+c2 (đpcm)

1)c)\(A=\dfrac{x^5+x^2}{x^3-x^2+x}\)

\(A=\dfrac{x\left(x^4+x\right)}{x\left(x^2-x+1\right)}\)

\(A=\dfrac{x\left(x^3+1\right)}{x^2-x+1}\)

\(A=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}\)

\(A=x\left(x+1\right)\)

\(A=x^2+x\)

\(A=x^2+x+\dfrac{1}{4}-\dfrac{1}{4}\)

\(A=\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(\Rightarrow MINA=-\dfrac{1}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

29 tháng 6 2015

1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)

nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x

2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)

mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha

29 tháng 6 2015

Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai 

Câu 2 sai đề. chứng minh như sau;

Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)

\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\) 

Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)

\(\Leftrightarrow0,25>0,5\) => vô lí

15 tháng 12 2017

vì b > 0 
ta chia phương trình cho b^2 : 
2(a/b)^2 - 5(a/b) +2 =0 
giải phương trình bậc 2 ,ta dc : (a/b) = 2 và (a/b) = (1/2) 
xét a = 2b : 
thay a=2b vào (1) : 8b^2 +2b-10 = 0 
giải b= -(5/4) => a = -(10/4) 
b = 1 => a = 2 
thay a,b vào (a+b)/(a-b) ==> đáp số là 3 
xét b = 2a : (tương tự) ==> đáp số là (1/3)

15 tháng 12 2017

bạn ơi P=1 nha bạn