K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

\(\frac{a}{b+c}>\frac{a}{a+b+c}\) (do a > 0)

Tương tự: \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

Từ 3 bất đẳng thức trên suy ra:

  \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Ta sẽ chứng minh:

  \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)  

Thât vậy, do a, b, c là các cạnh của tam giác nên bất đẳng thức trên tương đương với

   \(a\left(a+b+c\right)< 2a\left(b+c\right)\)

\(\Leftrightarrow a^2+ab+ac< 2ab+2ac\)

\(\Leftrightarrow a\left(a-b-c\right)< 0\)

Bất đẳng thức này đúng vì a>0 và a < b + c (vì trong tam giác, tổng hai cạnh lớn hơn cạnh thứ ba).

Vậy ta có: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)

Tương tự, \(\frac{b}{a+c}< \frac{2b}{a+b+c}\)

               \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Cộng 3 bất đẳng thức trên suy ra:

  \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Vậy bài toán đã được chứng minh.

15 tháng 5 2017

Mình chỉ chứng minh được bé hơn 2 thôi nhe

Theo bất đẳng thức tam giác thì b+c>a => \(\frac{a}{b+c}< \frac{a}{a}\left(=1\right)\)

Tương tự ta cũng có 

\(\frac{b}{a+c}< 1\)

\(\frac{c}{a+b}< 1\)

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 3\)

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:

Vì $a,b,c$ là 3 cạnh tam giác nên $a+b-c,a+c-b, b+c-a>0$
Áp dụng BĐT Cauchy dạng \(xy\leq \left(\frac{x+y}{2}\right)^2\) ta có:

\((a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2\)

\((a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2\)

\((b+c-a)(a+c-b)\leq \left(\frac{b+c-a+a+c-b}{2}\right)^2=c^2\)

Nhân theo vế các BĐT trên:

\([(a+b-c)(a+c-b)(b+c-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+b-c)(a+c-b)(b+c-a)\leq abc\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$.

25 tháng 5 2018

Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca

a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²

25 tháng 5 2018

Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn

24 tháng 11 2019

Bài 1:

Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)

Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.

Bài 2: 2 bài đều dùng Svac cả!

24 tháng 11 2019

Bài 2a làm bên h rồi nên chụp lại thôi!

flOnyqL.png (cần thì ib t gửi link cho)

22 tháng 7 2019

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

Tương tự,cộng theo vế và rút gọn =>đpcm

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt CÔ si

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

.............

8 tháng 5 2017

Theo BĐT Schur thì ta có:

\((a+b-c)(b+c-a)(c+a-b)\leq abc\)

Vậy thì giờ chỉ theo AM-GM là xong

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

\(\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}=3\)

27 tháng 7 2018

Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 8 - Học toán với OnlineMath tham khảo

27 tháng 7 2018

Sửa lại bài:

Kẻ MN vuông góc với B'C'

Ta có: BB'//CC'(cùng vuông góc với d)<=>tứ giác BB'CC' là hình thang

Mà MN//BB'(cùng vuông góc với d) 

Suy ra: BB'//MN//CC'

Xét hình thang BB'CC' có:

BB'//MN//CC' và BM=MC(gt) 

Suy ra: N là trung điểm B'C'<=> B'N=C'N 

Mà BM=MC

Suy ra: MN là đường trung bình của hình thang BB'CC'

Suy ra: \(MN=\frac{BB'+CC'}{2}\)(1)

Dễ chứng minh: \(\Delta_vAA'I=\Delta_vMNI\left(ch-gn\right)\)

Suy ra: \(AA'=MN\)(2)

Từ (1) và (2):

Suy ra" \(AA'=\frac{BB'+CC'}{2}\)

Vậy.....