K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca

a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²

25 tháng 5 2018

Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn

15 tháng 4 2016

   a2+b2+c2<2(ab+bc+ac)

<=>a2+b2+c2-2ab-2ac-2bc<0

<=>a^2+b^2+c^2-2ab-2ac+2bc-4bc<0

<=>(a-b-c)2-4bc<0

Mà a,b,c là độ dài 3 cạnh của tam giác nên a-b-c<0=>(a-b-c)2<0(1)

bc>0=>4bc>0=>-4bc<0(2)

từ (1) và (2) =>(a-b-c)2-4bc<0

k cho mình nha

15 tháng 4 2016

Theo BĐT tam giác:

(+) a+b > c

<=>(a+b).c > c2<=>ac+bc > c2 (1)

(+)a+c > b

<=>(a+c).b > b2<=>ab+bc > b2 (2)

(+)b+c > a

<=>(b+c).a > a2<=>ab+ac > a2 (3)

Cộng từng vế (1);(2);(3)

=>a2+b2+c2 < ac+bc+ab+bc+ab+ac=2ab+2bc+2ac=2(ab+bc+ca)

=>ĐPCM

4 tháng 7 2017

Bài 1:

A B C D

Xét tam giác ABD ta có:

\(AD< AB+DB\)(áp dụng bất đẳng thức tam giác)(1)

Xét tam giác BCD ta có:

\(DB< BC+DC\)(áp dụng bất đẳng thức tam giác)(2)

Từ (1) và (2) suy ra:

\(AD< AB+BC+DC\)

Vậy độ dài của bất kì cạnh nào cũng bé hơn tổng độ dài 3 cạnh còn lại(đpcm)
Chúc bạn học tốt!!!