Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt\(\frac{a}{b}=\frac{c}{d}=k\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\left(1\right)\\c=dk\left(2\right)\end{cases}}\)
Ta lại có \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(3\right)\)
Thay \(\left(1\right),\left(2\right)vào\left(3\right)có\)
\(\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(4\right)\)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(5\right)\)
Từ \(\left(4\right),\left(5\right)\Rightarrowđpcm\)
a) Vừa nhìn đề biết ngay sai
Sửa đề:
Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)
Giải:
Ta có:
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)
\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)
\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)
\(=5a-3b+2c=0\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\) vì \(P^2\left(-2\right)\ge0\)
Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)
b) Giải:
Từ giả thiết suy ra:
\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có:
\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)
a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c
P(2) = a.\(2^2\)+b.2+c = 4a+2b+c
=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0
<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)
Nếu P(1) = P(2) => P(1).P(2) = 0
Nếu P(1) = -P(2) => P(1).P(2) < 0
Vậy P(1).P(2)\(\le\)0
b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)
\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)
Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
Câu 1: Cho tam giác ABC, góc A = 640, góc B = 800. Tia phân giác góc BAC cắt BC tại D.
Số đo của góc là bao nhiêu? ( Câu này chưa rõ đề )
A. 700 B. 1020 C. 880 D. 680
Câu 2: Đơn thức -1/2 xy2 đồng dạng với:
A. -1/2 x2y B. x2y2 C. xy2 D. -1/2 xy
Câu 3: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AI vuông góc với BC. Độ dài cạnh AI là:( Mk chưa chắc đáp án nha bn )
A. 3√3 cm B. 3 cm C. 3√2 cm D. 6√3 cm
Câu 4: Tìm n ϵ N, biết 3n.2n = 216, kết quả là:
A. n = 6 B. n = 4 C. n = 2 D. n = 3
Câu 5: Xét các khẳng định sau. Tìm khẳng định đúng. Ba đường trung trực của một tam giác đồng qui tại một điểm gọi là:
A. Trọng tâm của tam giác B. Tâm đường tròn ngoại tiếp
C. Trực tâm của tam giác D. Tâm đường tròn nội tiếp
Câu 6: Cho tam giác ABC có gó A = 500; góc B : góc C = 2 : 3. Bất đẳng thức nào sau đây đúng?
A. AC < AB < BC B. BC < AC < AB C. AC < BC < AB D. BC < AB < AC
Câu 7: Cho điểm P (-4; 2). Điểm Q đối xứng với điểm P qua trục hoành có tọa độ là:
A. Q(4; 2) B. Q(-4; 2) C. Q(2; -4) D. Q(-4; -2)
Câu 8: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là:
A. Trọng tâm tam giác B. Trực tâm tam giác
C. Tâm đường tròn ngoại tiếp tam giác D. Tâm đường tròn nội tiếp tam giác
Câu 9:
P(x) = x2 - x3 + x4 và Q(x) = -2x2 + x3 – x4 + 1 và R(x) = -x3 + x2 +2x4.
P(x) + R(x) là đa thức:
A. 3x4 + 2x2 B. 3x4 C. -2x3 + 2x2 D. 3x4 - 2x3 + 2x2
Câu 10: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là:
A. 8cm B. √54cm C. √44cm D. 6cm
Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?
A. -5/6 B. -2/3 C. 3/8 D. 3/2
Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:
A. n = 4 B. n = 1 C. n = 3 D. n = 2
Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6
A. 1 B. -2 C. 0 D. -6
Câu 14: Tìm n ϵ N, biết 4n/3n = 64/27, kết quả là:
A. n = 2 B. n = 3 C. n = 1 D. n = 0
Câu 15: Tính (155 : 55).(35 : 65)
A. 243/32 B. 39/32 C. 32/405 D. 503/32
Sửa đề: Cho \(a,b,c,d\in N\)*\(...\)
Giải:
Ta có:
\(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Do \(a\in N\)* nên \(a-1;a\) là hai số tự nhiên liên tiếp
\(\Rightarrow a\left(a-1\right)⋮2\). Tương tự ta cũng có: \(\left\{{}\begin{matrix}b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\)
\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn
Lại có: \(a^2+c^2=b^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn
Do đó \(a+b+c+d\) là số chẵn \(\left(1\right)\)
\(\Rightarrow a+b+c+d>2\) \((\)Do \(a,b,c,d\in N\)*\()\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(a+b+c+d\) là hợp số (Đpcm)
Có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)
=> Đpcm
Có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^n}{b^n}=\frac{c^n}{d^n}=\frac{\left(a+c\right)^n}{\left(b+d\right)^n}=\frac{a^n+c^n}{b^n+d^n}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{\left(a+c\right)^n}{\left(b+d\right)^n}=\frac{a^n+c^n}{b^n+d^n}\)
=> Đpcm