K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

a, A=3+3^2+3^3+.....+3^100(1)

Nhân 2 vế với 3,ta được:

3A=3^2+3^3+3^4+......+3^101(2)

Lấy(2)-(1),ta được:

2A=3^101-3

b,Thay 2A vào biểu thức , ta được:

3^101-3+3=3^n

3^101=3^n

n=101

Nhớ tích đúng cho mình nha bạn.

8 tháng 10 2017

a) A= 3+3 ^2+...+3 ^100

=> 3A = 3^ 2+3^ 3+...+3 ^101

=> 3A-A= 3 ^2+3 ^3+...+3 ^101 - ( 3+3 ^2+...+3 ^100 )

=> 2A = 3 ^101 -3

=> A= 3^101 -3/2

c) 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101

=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )

=> 2A = 3^101 - 3 => 2A + 3 = 3^101

vậy n = 101 

8 tháng 10 2017

25=x-4^3=251

trả lời nhanh giúp em với

6 tháng 10 2015

a) A = 3 + 32 + ... + 3100

A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

A = 3( 1 + 2 ) + 33( 1 + 2 ) + ... + 399( 1 + 2 )

A = 3( 1 + 33 + ... 399 ) ( 1 ).

b) Từ ( 1 ) ta có A chia hết cho 4 và 9.

c) 3A = 32 + 33 + ... + 3100 + 3101

3A - A = ( 32 + 33 + ... + 3100 + 3101 ) - ( 3 + 32 + ... + 3100 )

2A = 3101 - 3 \(\Rightarrow\)2A + 3 = 3101

\(\Rightarrow\)n = 101.

 

 

6 tháng 10 2015

a) A= 3+32+...+3100

=> 3A = 32+33+...+3101

=> 3A-A=  32+33+...+3101 - ( 3+32+...+3100 ) 

=> 2A = 3101-3

=> A= \(\frac{3^{101}-3}{2}\)

b) Trong câu hỏi tương tự nhé

c) Theo câu a 

A = \(\frac{3^{101}-3}{2}\)

=> 2A =3101-3

=> 2A+3=3101

=> n=101

11 tháng 10 2017

2. (n+5)\(⋮\)(n-1) 

(n-1+6) chia hết (n-1) 

 mà n-1 chia hết cho n-1 

Để (n-1+6) chia hết cho (n-1) thì 6 pải chia hết cho (n-1)

Hay (n-1) thuộc ước của 6 mà ước của 6=....

Tự làm tiếp nha ^^

11 tháng 10 2017

Làm giùm mình 1 bài thui cũng được, xin đó! 

26 tháng 11 2015

A = 3 + 32 + 33 + 3+ . . . + 3100

3A = 32 + 33 + 34 + . . . + 3101

=> 3A - A = 3101 - 3

           2A = 3101 - 3

=> 2A + 3 = 3101

Mà : 2A + 3 = 3n

=> n = 101

Vậy : n = 101

22 tháng 9 2016

Bài này mk làm rất nhiều rồi mà bạn có thể và những câu hỏi liên quan để xem nhé

22 tháng 9 2016

Câu hỏi của Pham Tuan Anh - Toán lớp 6 | Học trực tuyến

1 tháng 7 2017

a)\(A=3+3^2+3^3+...+3^{100}\)

=>\(3A=3^2+3^3+3^4+...+3^{101}\)

=>\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

=>\(2A=3^{101}-3\)

=>2A+3=3101

b)3n=3101 => n=101