K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

Không có mô tả ảnh.

giúp mình với

28 tháng 6 2019

Với \(b=\frac{3-\sqrt{5}}{2}\)   => \(\sqrt{b}=\sqrt{\frac{6-2\sqrt{5}}{4}}=\frac{\sqrt{5}-1}{2}\)=> \(\sqrt{b}=1-b\)(*)

Áp dụng bất đẳng thức cosi ta có :

\(x^2+by^2\ge2xy\sqrt{b}\)

\(x^2+bz^2\ge2xz\sqrt{b}\)

\(\left(1-b\right)y^2+\left(1-b\right)z^2\ge2\left(1-b\right)yz\)

Cộng 3 vế của BĐT và kết hợp với (*) ta có

\(2x^2+y^2+z^2\ge2\sqrt{b}\left(xy+yz+xz\right)=2\sqrt{b}\)=> \(MinA=2\sqrt{b}\)với \(b=\frac{3-\sqrt{5}}{2}\)

Dấu bằng xảy ra khi \(y=z=\frac{x}{\sqrt{b}}\)và xy+yz+xz=1

=> \(x=\sqrt{\frac{b\sqrt{b}}{2b+\sqrt{b}}};y=z=\sqrt{\frac{\sqrt{b}}{2b+\sqrt{b}}}\)với \(b=\frac{3-\sqrt{5}}{2}\)

2 tháng 4 2016

M=2017-a^3=2016 nha pạn!

K đúng cho mk nhé!

10 tháng 1 2016

\(\left(a-b\right)^2=a^2-2ab+b^2\ge0 \)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow A\ge2\)